Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1271535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029212

RESUMO

Introduction: Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods: In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion: Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.

2.
Front Genet ; 14: 1219085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547468

RESUMO

Ciliates have been recognized as one of the major components of the microbial food web, especially in ultra-oligotrophic waters, such as the Eastern Mediterranean Sea, where nutrients are scarce and the microbial community is dominated by pico- and nano-sized organisms. For this reason, ciliates play an important role in these ecosystems since they are the main planktonic grazers. Regardless the importance of these organisms, little is known about the community structure of heterotrophic and mixotrophic ciliates and how they are associated to their potential prey. In this study, we used 18S V4 rRNA gene metabarcoding to analyze ciliate community dynamics and how the relationship with potential prey changes according to different seasons and depths. Samples were collected seasonally at two stations of the Eastern Mediterranean Sea (HCB: coastal, M3A: offshore) from the surface and deep chlorophyll maximum (DCM) layers. The ciliate community structure varied across depths in HCB and across seasons in M3A, and the network analysis showed that in both stations, mixotrophic oligotrichs were positively associated with diatoms and showed few negative associations with ASVs annotated as marine Stramenopiles (MAST). On the other hand, heterotrophic tintinnids showed negative relationships in both HCB and M3A stations, mostly with Ochrophyta and Chlorophyta. These results showed, in first place that, although the two stations are close to each other, the ciliate dynamics differed between them. Moreover, mixotrophic and heterotrophic ciliates may have different ecological niches since mixotrophic ciliates may be more selective compared to heterotrophic species regarding their prey. These findings are the first glimpse into an understanding of the dynamics between heterotrophic and mixotrophic ciliates and their role in microbial assemblages and dynamics of ultra-oligotrophic environments.

3.
Chemosphere ; 336: 139109, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270041

RESUMO

Silver nanoparticles (AgNPs) nowadays appear in close to 24% of consumer products that contain engineered nanomaterials. Thus, they are expected to be released into the environment, where their fate and effect are still undetermined. Considering the evidenced efficacy of the single particle Inductively Coupled Plasma - Mass Spectrometry (sp ICP-MS) technique in the study of nanomaterials, this work reports on the use of sp ICP-MS along with an online dilution sample introduction system for the direct analysis of untreated and spiked seawater samples, as part of a larger scale experiment studying the fate of Ag (ionic and nanoparticles) in seawater mesocosm systems. Silver nanoparticles coated with branched polyethyleneimine (BPEI@AgNPs) or ionic silver (Ag+) were introduced gradually into the seawater mesocosm tanks at very low, environmentally relevant concentrations (50 ng Ag L-1 per day, for 10 consecutive days, up to a total of 500 ng Ag L-1), and samples were collected and analyzed daily, within a consistent time window. Using very low detector dwell time (75 µs) and specialized data treatment, information was obtained on the nanoparticles' size distribution and particle number concentration, as well as the ionic silver content, of both the AgNPs and the Ag+ treated seawater mesocosm tanks. The results for the AgNP treated samples indicated the rapid degradation of the added silver particles, and the subsequent increase of ionic silver, with recoveries close to 100% for the first days of the experiment. On the other hand, particle formation was observed in the Ag+ treated seawater tanks, and even though the number concentration of silver-containing nanoparticles increased throughout the experiment, the amount of silver per particle remained relatively constant from the early days of the experiment. In addition, the online dilution sample introduction system for the ICP-MS proved capable of handling the untreated seawater matrix without significant contamination issues and downtime, while the low dwell time and data treatment procedure developed were shown to be suitable for the analysis of nanomaterials at the low nm-scale, despite the complex and heavy matrix introduced into the ICP-MS.


Assuntos
Nanopartículas Metálicas , Prata , Prata/análise , Nanopartículas Metálicas/análise , Água do Mar , Análise Espectral , Íons , Espectrometria de Massas/métodos , Tamanho da Partícula
4.
Microorganisms ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838238

RESUMO

Climate change driven by human activities encompasses the increase in atmospheric CO2 concentration and sea-surface temperature. Little is known regarding the synergistic effects of these phenomena on bacterial communities in oligotrophic marine ecosystems that are expected to be particularly vulnerable. Here, we studied bacterial community composition changes based on 16S rRNA sequencing at two fractions (0.1-0.2 and >0.2 µm) during a 10- day fully factorial mesocosm experiment in the eastern Mediterranean where the pH decreased by ~0.3 units and temperature increased by ~3 °C to project possible future changes in surface waters. The bacterial community experienced significant taxonomic differences driven by the combined effect of time and treatment; a community shift one day after the manipulations was noticed, followed by a similar state between all mesocosms at the third day, and mild shifts later on, which were remarkable mainly under sole acidification. The abundance of Synechococcus increased in response to warming, while the SAR11 clade immediately benefited from the combined acidification and warming. The effect of the acidification itself had a more persistent impact on community composition. This study highlights the importance of studying climate change consequences on ecosystem functioning both separately and simultaneously, considering the ambient environmental parameters.

5.
Sci Total Environ ; 857(Pt 3): 159624, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280077

RESUMO

Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications in the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used six large scale mesocosms to simulate future ocean scenarios of high plastic concentration. Each mesocosm was filled with 3 m3 of seawater from the oligotrophic Sea of Crete, in the Eastern Mediterranean Sea. A known amount of standard polystyrene microbeads of 30 µm diameter was added to three replicate mesocosms, while maintaining the remaining three as plastic-free controls. Over the course of a 12-day experiment, we explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of carbohydrate-like and proteinaceous marine gel compounds in the sea-surface microlayer. Importantly, this resulted in a ∼3 % reduction in the concentration of dissolved CO2 in the underlying water. This reduction was associated to both direct and indirect impacts of microplastic pollution on the uptake of CO2 within the marine carbon cycle, by modifying the biogenic composition of the sea's boundary layer with the atmosphere.


Assuntos
Dióxido de Carbono , Poluentes Químicos da Água , Dióxido de Carbono/análise , Microplásticos , Plásticos , Água do Mar/química , Água/análise , Mar Mediterrâneo , Poluentes Químicos da Água/análise
6.
J Plankton Res ; 44(2): 333-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644338

RESUMO

Ciliate conjugation is considered a rare event to encounter in the field and it is mostly reported from cultures. In this work, we describe a synchronized conjugation event of planktonic ciliates that was discovered twice; in September 2019, at two different locations in the Cretan Sea, Eastern Mediterranean, and in October 2020. In 2019, first, at 2 m depth of the coastal station POSEIDON-HCB, in samples fixed with acid Lugol and formaldehyde, we found 340 and 200 mating pairs L-1of different ciliate species, respectively; and second, at the Heraklion port, we found 220 mating pairs L-1 of Strombidinopsis sp. and 1960 mating pairs L-1 of Strombidium sp. At the Heraklion port visited again in 2020, we found 800 mating pairs L-1 of Strombidinopsis sp. and 200 mating pairs L-1 of Strombidium sp. Since detailed descriptions of conjugation in pelagic oligotrich ciliates are missing, our observations indicate that ciliate conjugation could be a frequent and periodic phenomenon, under specific conditions.

7.
Sci Rep ; 11(1): 23849, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903787

RESUMO

It remains unclear as to how mixoplankton (coupled phototrophy and phagotrophy in one cell) affects the estimation of grazing rates obtained from the widely used dilution grazing technique. To address this issue, we prepared laboratory-controlled dilution experiments with known mixtures of phyto-, protozoo-, and mixoplankton, operated under different light regimes and species combinations. Our results evidenced that chlorophyll is an inadequate proxy for phytoplankton when mixoplankton are present. Conversely, species-specific cellular counts could assist (although not fully solve) in the integration of mixoplanktonic activity in a dilution experiment. Moreover, cell counts can expose prey selectivity patterns and intraguild interactions among grazers. Our results also demonstrated that whole community approaches mimic reality better than single-species laboratory experiments. We also confirmed that light is required for protozoo- and mixoplankton to correctly express their feeding activity, and that overall diurnal grazing is higher than nocturnal. Thus, we recommend that a detailed examination of initial and final plankton communities should become routine in dilution experiments, and that incubations should preferably be started at the beginning of both day and night periods. Finally, we hypothesize that in silico approaches may help disentangle the contribution of mixoplankton to the community grazing of a given system.

8.
J Plankton Res ; 43(5): 691-711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34584492

RESUMO

The annual/temporal and vertical dynamics of the microbial food web (MFW) was studied in a coastal station of the oligotrophic Eastern Mediterranean Sea. The present study analyzed the changes of all components of the MFW with a specific focus on the relationships between different size classes of heterotrophic and mixotrophic ciliates with their potential prey. The MFW was dominated by heterotrophic picoplankton in all months and depths analyzed, whereas autotrophic nanoplankton took advantage in cold months with higher nutrient availability. On the other hand, mixotrophic microplankton biomass was higher in summer when nutrients and chlorophyll-a were scarce. As part of the mixotrophic biomass, mixotrophic ciliates were correlated with their "potential" prey at the surface and deep chlorophyll maximum. Large mixotrophic ciliates (L. strobila) were more selective in terms of potential prey, showing a correlation with Synechococcus. On the other hand, mixotrophic nanociliates (Strombidium dalum) were correlated differently with different potential prey according to depth, supporting the idea that nanociliates could be more generalists in terms of prey selection. Because the relationships between mixotrophic ciliates and their potential prey are still poorly studied, this work represents the start for further investigation.

9.
Viruses ; 12(8)2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722579

RESUMO

Viruses interfere with their host's metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host's energy supply. AMGs involved in "non-traditional" energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a "pool" of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.


Assuntos
Ecossistema , Metagenômica , Água do Mar/virologia , Proteínas Virais/genética , Viroma , Vírus/genética , Bactérias/genética , RNA Ribossômico 16S/genética
10.
Sci Rep ; 10(1): 12637, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724047

RESUMO

Mesocosm experiments have been fundamental to investigate the effects of elevated CO2 and ocean acidification (OA) on planktic communities. However, few of these experiments have been conducted using naturally nutrient-limited waters and/or considering the combined effects of OA and ocean warming (OW). Coccolithophores are a group of calcifying phytoplankton that can reach high abundances in the Mediterranean Sea, and whose responses to OA are modulated by temperature and nutrients. We present the results of the first land-based mesocosm experiment testing the effects of combined OA and OW on an oligotrophic Eastern Mediterranean coccolithophore community. Coccolithophore cell abundance drastically decreased under OW and combined OA and OW (greenhouse, GH) conditions. Emiliania huxleyi calcite mass decreased consistently only in the GH treatment; moreover, anomalous calcifications (i.e. coccolith malformations) were particularly common in the perturbed treatments, especially under OA. Overall, these data suggest that the projected increase in sea surface temperatures, including marine heatwaves, will cause rapid changes in Eastern Mediterranean coccolithophore communities, and that these effects will be exacerbated by OA.

11.
Mar Environ Res ; 150: 104752, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326679

RESUMO

The effects of the abrupt input of high quantities of dissolved inorganic nitrogen and phosphorus on prokaryotic and eukaryotic microbial plankton were investigated in an attempt to simulate the nutrient disturbances caused by eutrophication and climate change. Two nutrient levels were created through the addition of different quantities of dissolved nutrients in a mesocosm experiment. During the developed blooms, compositional differences were found within bacteria and microbial eukaryotes, and communities progressed towards species of faster metabolisms. Regarding the different nutrient concentrations, different microbial species were associated with each nutrient treatment and community changes spanned from the phylum to the operational taxonomic unit (OTU) level. Network analyses revealed important differences in the biotic connections developed: more competitive relationships were established in the more intense nutrient disturbance and networks of contrasting complexity were formed around species of different ecological strategies. This work highlights that sudden disturbances in water column chemistry lead to the development of entirely different microbial food webs with distinct ecological characteristics.


Assuntos
Eucariotos , Microbiota , Código de Barras de DNA Taxonômico , Eutrofização , Nitrogênio , Nutrientes , Fósforo
12.
Sci Total Environ ; 605-606: 637-645, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28672252

RESUMO

A mesocosm experiment was performed to study benthic-pelagic coupling under a eutrophication gradient. Nine mesocosms were deployed in the facilities of the Hellenic Center for Marine Research in Crete, in the Eastern Mediterranean. The mesocosms were 4m deep, containing 1.5m3 of coastal water and, at the bottom, they included 85l of undisturbed sediment, collected from a semi-impacted area in the port of Heraklion, Crete. A eutrophication gradient was created by adding nutrients in the water column (Low and High) and the experiment lasted 58days. Water column and sediment environmental variables were measured at regular intervals. The results indicate that sedimentation caused by eutrophication in the water column affected sediment geochemical variables but in most cases a time lag was observed between the trophic status of the water column and the response of the sediment. Additionally, in the High eutrophication treatment, several fluctuations were observed and the system did not recover within the experimental duration, as opposed to the Low treatment which showed fewer fluctuations and signs of recovery.

13.
Sci Total Environ ; 601-602: 1838-1848, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28628993

RESUMO

During this study, three microcosm experiments were carried out with natural coastal seawater, collected in the Eastern Mediterranean Sea, in order to assess the effect of silver nanoparticle (AgNP) exposure to natural plankton communities. The impact of coating (branched-polyethyleneimine: BPEI vs. poly-vinylpyrrolidone: PVP), size (40 vs. 60nm), concentration (200, 500, 2000, 5000 and 10,000ng Ag L-1) and silver form (dissolved Ag+ vs. AgNPs) were tested. The results of chlorophyll a concentration revealed that PVP AgNPs caused a higher toxicity than BPEI AgNPs, and this was possibly related to the measured higher dissolution rate. Additionally, toxicity of BPEI AgNPs was size-dependent, with 40 being more toxic than 60 nm AgNPs, which was nevertheless not seen clearly for PVP AgNPs. Interestingly, community composition altered in response to AgNP exposure: cyanobacterial abundance was negatively affected at concentrations ≥200ng Ag L-1, and dinoflagellate abundance and composition were altered at a 2000ng Ag L-1 concentration. Specifically, dinoflagellate (Gymnodinium, Prorocentrum and Gyrodinium) and diatom (Nitzschia, Navicula and Climacosphenia) genera either increased or decreased, highlighting taxa-specific effects, with some of them being able to tolerate, compensate or even benefit from AgNPs. Silver in either form (dissolved Ag+ or in NPs) caused almost identical results in the plankton community, further indicating that Ag+ release is the primary cause of AgNP toxicity. This study employed for the first time environmentally relevant AgNP concentrations (minimum 200ng Ag L-1) in natural seawater without pre-filtration steps and showed that community changes were driven by the exposure but were largely dependent on ambient physico-chemical characteristics and should be further investigated.


Assuntos
Nanopartículas Metálicas/toxicidade , Plâncton/efeitos dos fármacos , Prata/toxicidade , Clorofila/análise , Clorofila A , Cianobactérias , Diatomáceas , Dinoflagellida , Mar Mediterrâneo
14.
Sci Total Environ ; 601-602: 15-21, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28544887

RESUMO

This study investigates the dynamic processes affecting silver (Ag) nanoparticles that have been spiked into seawater at environmentally relevant concentrations (200 and 2000ngAgL-1). Seawater samples were taken at regular time intervals from multiple microcosm tanks and analysed rapidly, without any sample preparation, using a recently developed flow injection on-line dilution single particle inductively coupled plasma mass spectrometry method. Dissolution was found to be the predominant process of Ag nanoparticle transformation, with its rate being influenced by the type and thickness of the nanoparticle organic coating. More specifically the branched poly(ethyleneimine) coating provided additional stability to the 40 and 60nmAg nanoparticles that were tested, compared to the poly(vinylpyrrolidone) coated ones. At high Ag nanoparticle spiking levels and after 24h of exposure an extra Ag-containing nanoparticle peak appeared at the low range of the NP size distribution histogram. This peak corresponds to Ag-containing particles that contain Ag mass equivalent to 25-30nm Ag nanoparticles (assuming spherical shape). However, the composition and the "real" size of these particles remains unknown as the particles may have formed from the in-situ reduction of dissolved silver or they originate from other processes involving nanocrystal formation, as has been shown to occur in sewage sludge, or interaction with natural organic matter. Overall, this study provides additional insight into the physicochemical mechanisms behind Ag nanoparticle behavior in marine media.

15.
Sci Rep ; 6: 29286, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404551

RESUMO

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.


Assuntos
Luz , Fotossíntese , Plâncton/fisiologia , Animais , Processos Autotróficos , Biomassa , Ecossistema , Processos Heterotróficos , Mar Mediterrâneo , Especificidade de Órgãos , Comportamento Predatório
16.
Protist ; 167(2): 106-20, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26927496

RESUMO

Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic "phytoplankton" and phagotrophic "microzooplankton". However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.


Assuntos
Eucariotos/classificação , Cadeia Alimentar , Fitoplâncton/classificação , Zooplâncton/classificação , Animais , Metabolismo Energético/fisiologia , Eucariotos/metabolismo , Eucariotos/fisiologia , Processos Fototróficos , Filogenia , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia , Zooplâncton/metabolismo , Zooplâncton/fisiologia
17.
ISME J ; 10(4): 968-78, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26565724

RESUMO

Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.


Assuntos
Alphaproteobacteria/metabolismo , Fosfolipídeos/química , Fósforo/química , Fitoplâncton/metabolismo , Água do Mar/microbiologia , Glicosiltransferases/metabolismo , Processos Heterotróficos , Mar Mediterrâneo , Oceanos e Mares , Fosfatos/química , Fosfolipases/metabolismo , Filogenia , Microbiologia da Água
18.
Mar Pollut Bull ; 101(2): 784-93, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26478459

RESUMO

Biological and geochemical variables in the water column and sediments were monitored along a transect of a mussel farm located in a transitional environment in Maliakos Gulf, a semi-enclosed gulf in eastern Mediterranean. Analyses of water, sediment and macrofauna samples were used to calculate ecological status indicators in the context of the European Water Framework Directive. The water column ecological status was "Poor" or "Bad" showing little change with distance from the farm, but the ecological status of the benthic communities was found to be "Good," although there were quantitative changes in macrofaunal indices with distance from the farm.


Assuntos
Aquicultura/métodos , Bivalves , Meio Ambiente , Animais , Ecossistema , Monitoramento Ambiental , Mar Mediterrâneo , Qualidade da Água
19.
PLoS One ; 10(10): e0141071, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496714

RESUMO

A large data set from the Eastern Mediterranean was analyzed to explore the relationship between seawater column variables and benthic community status. Our results showed a strong quantitative link between the seawater column variables (Chlorophyll a and Eutrophication Index) and various indicators describing benthic diversity and community composition. The percentage of benthic opportunistic species increased significantly in the stations with high trophic status of the seawater column and so did the strength of the coupling between values of seawater column and benthic indicators. The Eutrophication Index threshold level of 0.85, separating the "Bad and Poor" from "Moderate to High" conditions could serve as an acceptable critical value above which there is a readily observable change in benthic community composition.


Assuntos
Clorofila/análise , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos/química , Água do Mar/química , Biodiversidade , Clorofila A , Interpretação Estatística de Dados , Ecossistema , Humanos , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
20.
Appl Environ Microbiol ; 80(13): 3784-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747897

RESUMO

A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Ecossistema , Água do Mar/microbiologia , Clorofila/análise , Clorofila A , DNA Bacteriano/química , DNA Bacteriano/genética , Grécia , Dados de Sequência Molecular , Compostos de Nitrogênio/análise , Compostos Orgânicos/análise , Água do Mar/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...