Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.

3.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342608

RESUMO

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Fenótipo
4.
Immunity ; 56(10): 2218-2230, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708889

RESUMO

In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.

5.
Science ; 381(6657): 515-524, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535729

RESUMO

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Assuntos
Polaridade Celular , Quimiocina CXCL9 , Neoplasias de Cabeça e Pescoço , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análise , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Macrófagos/imunologia , Osteopontina/análise , Osteopontina/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Polaridade Celular/imunologia
6.
Int J Cancer ; 153(9): 1568-1578, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306359

RESUMO

The spatial distribution of tumor-infiltrating lymphocytes (TIL) predicts breast cancer outcome and response to systemic therapy, highlighting the importance of an intact tissue structure for characterizing tumors. Here, we present ST-FFPE, a spatial transcriptomics method for the analysis of formalin-fixed paraffin-embedded samples, which opens the possibility of interrogating archival tissue. The method involves extraction, exome capture and sequencing of RNA from different tumor compartments microdissected by laser-capture, and can be used to study the cellular composition of tumor microenvironment. Focusing on triple-negative breast cancer (TNBC), we characterized T cells, B cells, dendritic cells, fibroblasts and endothelial cells in both stromal and intra-epithelial compartments. We found a highly variable spatial distribution of immune cell subsets among tumors. This analysis revealed that the immune repertoires of intra-epithelial T and B cells were consistently less diverse and more clonal than those of stromal T and B cells. T-cell receptor (TCR) sequencing confirmed a reduced diversity and higher clonality of intra-epithelial T cells relative to the corresponding stromal T cells. Analysis of the top 10 dominant clonotypes in the two compartments showed a majority of shared but also some unique clonotypes both in stromal and intra-epithelial T cells. Hyperexpanded clonotypes were more abundant among intra-epithelial than stromal T cells. These findings validate the ST-FFPE method and suggest an accumulation of antigen-specific T cells within tumor core. Because ST-FFPE is applicable for analysis of previously collected tissue samples, it could be useful for rapid assessment of intratumoral cellular heterogeneity in multiple disease and treatment settings.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Células Endoteliais , Transcriptoma , Receptores de Antígenos de Linfócitos T , Perfilação da Expressão Gênica , Linfócitos do Interstício Tumoral , Microambiente Tumoral/genética
7.
Immunity ; 56(5): 1152, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163985
8.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208130

RESUMO

BACKGROUND: Although immune checkpoint inhibitors have been a breakthrough in clinical oncology, these therapies fail to produce durable responses in a significant fraction of patients. This lack of long-term efficacy may be due to a poor pre-existing network linking innate and adaptive immunity. Here, we present an antisense oligonucleotide (ASO)-based strategy that dually targets toll-like receptor 9 (TLR9) and programmed cell death ligand 1 (PD-L1), aiming to overcome resistance to anti-PD-L1 monoclonal therapy. METHODS: We designed a high-affinity immunomodulatory IM-TLR9:PD-L1-ASO antisense oligonucleotide (hereafter, IM-T9P1-ASO) targeting mouse PD-L1 messenger RNA and activating TLR9. Then, we performed in vitro and in vivo studies to validate the IM-T9P1-ASO activity, efficacy, and biological effects in tumors and draining lymph nodes. We also performed intravital imaging to study IM-T9P1-ASO pharmacokinetics in the tumor. RESULTS: IM-T9P1-ASO therapy, unlike PD-L1 antibody therapy, results in durable antitumor responses in multiple mouse cancer models. Mechanistically, IM-T9P1-ASO activates a state of tumor-associated dendritic cells (DCs), referred to here as DC3s, which have potent antitumor potential but express the PD-L1 checkpoint. IM-T9P1-ASO has two roles: it triggers the expansion of DC3s by engaging with TLR9 and downregulates PD-L1, thereby unleashing the antitumor functions of DC3s. This dual action leads to tumor rejection by T cells. The antitumor efficacy of IM-T9P1-ASO depends on the antitumor cytokine interleukin-12 (IL-12), produced by DC3s, and Batf3, a transcription factor required for DC development. CONCLUSIONS: By simultaneously targeting TLR9 and PD-L1, IM-T9P1-ASO amplifies antitumor responses via DC activation, leading to sustained therapeutic efficacy in mice. By highlighting differences and similarities between mouse and human DCs, this study could serve to develop similar therapeutic strategies for patients with cancer.


Assuntos
Neoplasias , Receptor Toll-Like 9 , Humanos , Camundongos , Animais , Receptor Toll-Like 9/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Oligonucleotídeos Antissenso , Células Dendríticas
9.
Cell ; 186(7): 1448-1464.e20, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001504

RESUMO

Neutrophils accumulate in solid tumors, and their abundance correlates with poor prognosis. Neutrophils are not homogeneous, however, and could play different roles in cancer therapy. Here, we investigate the role of neutrophils in immunotherapy, leading to tumor control. We show that successful therapies acutely expanded tumor neutrophil numbers. This expansion could be attributed to a Sellhi state rather than to other neutrophils that accelerate tumor progression. Therapy-elicited neutrophils acquired an interferon gene signature, also seen in human patients, and appeared essential for successful therapy, as loss of the interferon-responsive transcription factor IRF1 in neutrophils led to failure of immunotherapy. The neutrophil response depended on key components of anti-tumor immunity, including BATF3-dependent DCs, IL-12, and IFNγ. In addition, we found that a therapy-elicited systemic neutrophil response positively correlated with disease outcome in lung cancer patients. Thus, we establish a crucial role of a neutrophil state in mediating effective cancer therapy.


Assuntos
Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais/genética , Imunoterapia , Interferons
10.
Clin Cancer Res ; 29(8): 1605-1619, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749873

RESUMO

PURPOSE: Adding losartan (LOS) to FOLFIRINOX (FFX) chemotherapy followed by chemoradiation (CRT) resulted in 61% R0 surgical resection in our phase II trial in patients with locally advanced pancreatic cancer (LAPC). Here we identify potential mechanisms of benefit by assessing the effects of neoadjuvant LOS on the tumor microenvironment. EXPERIMENTAL DESIGN: We performed a gene expression and immunofluorescence (IF) analysis using archived surgical samples from patients treated with LOS+FFX+CRT (NCT01821729), FFX+CRT (NCT01591733), or surgery upfront, without any neoadjuvant therapy. We also conducted a longitudinal analysis of multiple biomarkers in the plasma of treated patients. RESULTS: In comparison with FFX+CRT, LOS+FFX+CRT downregulated immunosuppression and pro-invasion genes. Overall survival (OS) was associated with dendritic cell (DC) and antigen presentation genes for patients treated with FFX+CRT, and with immunosuppression and invasion genes or DC- and blood vessel-related genes for those treated with LOS+FFX+CRT. Furthermore, LOS induced specific changes in circulating levels of IL-8, sTie2, and TGF-ß. IF revealed significantly less residual disease in lesions treated with LOS+FFX+CRT. Finally, patients with a complete/near complete pathologic response in the LOS+FFX+CRT-treated group had reduced CD4+FOXP3+ regulatory T cells (Tregs), fewer immunosuppressive FOXP3+ cancer cells (C-FOXP3), and increased CD8+ T cells in pancreatic ductal adenocarcinoma lesions. CONCLUSIONS: Adding LOS to FFX+CRT reduced pro-invasion and immunosuppression-related genes, which were associated with improved OS in patients with LAPC. Lesions from responders in the LOS+FFX+CRT-treated group had reduced Tregs, decreased C-FOXP3 and increased CD8+ T cells. These findings suggest that LOS may potentiate the benefit of FFX+CRT by reducing immunosuppression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Losartan/uso terapêutico , Fluoruracila , Leucovorina , Terapia Neoadjuvante/métodos , Terapia de Imunossupressão , Fatores de Transcrição Forkhead/genética , Microambiente Tumoral/genética
11.
Nature ; 614(7946): 136-143, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470303

RESUMO

The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.


Assuntos
Linfócitos T CD8-Positivos , Ritmo Circadiano , Células Dendríticas , Melanoma , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos Endogâmicos C57BL , Antígeno B7-1 , Antígenos de Neoplasias/imunologia , Linfonodos , Ritmo Circadiano/imunologia
13.
BMC Bioinformatics ; 23(1): 336, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963997

RESUMO

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) technologies offer unique opportunities for exploring heterogeneous cell populations. However, in-depth single-cell transcriptomic characterization of complex tissues often requires profiling tens to hundreds of thousands of cells. Such large numbers of cells represent an important hurdle for downstream analyses, interpretation and visualization. RESULTS: We develop a framework called SuperCell to merge highly similar cells into metacells and perform standard scRNA-seq data analyses at the metacell level. Our systematic benchmarking demonstrates that metacells not only preserve but often improve the results of downstream analyses including visualization, clustering, differential expression, cell type annotation, gene correlation, imputation, RNA velocity and data integration. By capitalizing on the redundancy inherent to scRNA-seq data, metacells significantly facilitate and accelerate the construction and interpretation of single-cell atlases, as demonstrated by the integration of 1.46 million cells from COVID-19 patients in less than two hours on a standard desktop. CONCLUSIONS: SuperCell is a framework to build and analyze metacells in a way that efficiently preserves the results of scRNA-seq data analyses while significantly accelerating and facilitating them.


Assuntos
COVID-19 , Transcriptoma , Análise por Conglomerados , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
15.
Nat Biotechnol ; 40(11): 1654-1662, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35654978

RESUMO

Cells in complex organisms undergo frequent functional changes, but few methods allow comprehensive longitudinal profiling of living cells. Here we introduce scission-accelerated fluorophore exchange (SAFE), a method for multiplexed temporospatial imaging of living cells with immunofluorescence. SAFE uses a rapid bioorthogonal click chemistry to remove immunofluorescent signals from the surface of labeled cells, cycling the nanomolar-concentration reagents in seconds and enabling multiple rounds of staining of the same samples. It is non-toxic and functional in both dispersed cells and intact living tissues. We demonstrate multiparameter (n ≥ 14), non-disruptive imaging of murine peripheral blood mononuclear and bone marrow cells to profile cellular differentiation. We also show longitudinal multiplexed imaging of bone marrow progenitor cells as they develop into neutrophils over 6 days and real-time multiplexed cycling of living mouse hepatic tissues. We anticipate that SAFE will find broad utility for investigating physiologic dynamics in living systems.


Assuntos
Corantes Fluorescentes , Leucócitos Mononucleares , Camundongos , Animais , Corantes Fluorescentes/química , Coloração e Rotulagem , Imagem Óptica/métodos , Imunofluorescência
16.
Adv Biol (Weinh) ; 6(8): e2200030, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35675910

RESUMO

Treatment with checkpoint inhibitors can be extraordinarily effective in a fraction of patients, particularly those whose tumors are pre-infiltrated by T cells. In others, efficacy is considerably lower, which has led to interest in developing strategies for sensitization to immunotherapy. Using various colorectal cancer mouse models, it is shown that the use of Traf2 and Nck-interacting protein kinase inhibitors (TNIKi) unexpectedly increases tumor infiltration by PD-1+ CD8+ T cells, thus contributing to tumor control. This appears to happen by two independent mechanisms, by inducing immunogenic cell death and separately by directly activating CD8. The use of TNIKi achieves complete tumor control in 50% of mice when combined with checkpoint inhibitor targeting PD-1. These findings reveal immunogenic properties of TNIKi and indicate that the proportion of colorectal cancers responding to checkpoint therapy can be increased by combining it with immunogenic kinase inhibitors.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Inibidores de Proteínas Quinases , Animais , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Imunoterapia , Camundongos , Receptor de Morte Celular Programada 1 , Inibidores de Proteínas Quinases/farmacologia
17.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522219

RESUMO

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Assuntos
Neoplasias , Neutrófilos , Humanos , Imunidade Inata , Inflamação , Neoplasias/genética , Fenótipo
19.
Nat Rev Clin Oncol ; 19(6): 402-421, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35354979

RESUMO

In the past decade, substantial advances have been made in understanding the biology of tumour-associated macrophages (TAMs), and their clinical relevance is emerging. A particular aspect that is becoming increasingly clear is that the interaction of TAMs with cancer cells and stromal cells in the tumour microenvironment enables and sustains most of the hallmarks of cancer. Therefore, manipulation of TAMs could enable improved disease control in a substantial fraction of patients across a large number of cancer types. In this Review, we examine the diversity of TAMs in various cancer indications and how this heterogeneity is being revisited with the advent of single-cell technologies, and then explore the current knowledge on the functional roles of different TAM states and the prognostic and predictive value of TAM-related signatures. We also review agents targeting TAMs that are currently being or will soon be tested in clinical trials, and how manipulations of TAMs can improve existing anticancer treatments. Finally, we discuss how TAM-targeting approaches could be further integrated into routine clinical practice, considering a precision oncology approach and viewing TAMs as a dynamic population that can evolve under treatment pressure.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Macrófagos , Neoplasias/patologia , Neoplasias/terapia , Medicina de Precisão , Microambiente Tumoral
20.
Cancer Rep (Hoboken) ; 5(3): e1491, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34231337

RESUMO

BACKGROUND: Secretory carcinoma is a more recently described subtype of salivary gland carcinoma that may pose diagnostic challenges and frequently harbors NTRK fusions that may successfully be targeted by TRK inhibitors in advanced disease. CASE: We present the case of a female patient with secretory carcinoma arising in the base of tongue with persistent disease after debulking surgery and definitive chemoradiation. As an alternative to salvage surgery, which would have resulted in significant impairment of swallowing and speech function, a targeted therapy with the TRK-inhibitor larotrectinib against an identified ETV6-NTRK3 fusion product was initiated. Larotrectinib treatment has been well tolerated, resulted in durable complete response and the patient maintains good swallowing and speech function. CONCLUSION: The presented case underscores the importance of the accurate diagnosis of secretory carcinoma. It further highlights the impact of molecular testing as targeted therapies may play an important role in the management of advanced salivary gland cancers.


Assuntos
Neoplasias das Glândulas Salivares , Glândulas Salivares Menores , Neoplasias da Mama , Carcinoma , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Fusão Oncogênica , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/terapia , Glândulas Salivares Menores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...