Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cereb Cortex ; 34(13): 30-39, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696599

RESUMO

The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.


Assuntos
Tonsila do Cerebelo , Imageamento por Ressonância Magnética , Córtex Visual , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Masculino , Feminino , Lactente , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiopatologia , Córtex Visual/crescimento & desenvolvimento , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Predisposição Genética para Doença/genética
2.
J Neurodev Disord ; 16(1): 17, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632549

RESUMO

Monogenic disorders account for a large proportion of population-attributable risk for neurodevelopmental disabilities. However, the data necessary to infer a causal relationship between a given genetic variant and a particular neurodevelopmental disorder is often lacking. Recognizing this scientific roadblock, 13 Intellectual and Developmental Disabilities Research Centers (IDDRCs) formed a consortium to create the Brain Gene Registry (BGR), a repository pairing clinical genetic data with phenotypic data from participants with variants in putative brain genes. Phenotypic profiles are assembled from the electronic health record (EHR) and a battery of remotely administered standardized assessments collectively referred to as the Rapid Neurobehavioral Assessment Protocol (RNAP), which include cognitive, neurologic, and neuropsychiatric assessments, as well as assessments for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Co-enrollment of BGR participants in the Clinical Genome Resource's (ClinGen's) GenomeConnect enables display of variant information in ClinVar. The BGR currently contains data on 479 participants who are 55% male, 6% Asian, 6% Black or African American, 76% white, and 12% Hispanic/Latine. Over 200 genes are represented in the BGR, with 12 or more participants harboring variants in each of these genes: CACNA1A, DNMT3A, SLC6A1, SETD5, and MYT1L. More than 30% of variants are de novo and 43% are classified as variants of uncertain significance (VUSs). Mean standard scores on cognitive or developmental screens are below average for the BGR cohort. EHR data reveal developmental delay as the earliest and most common diagnosis in this sample, followed by speech and language disorders, ASD, and ADHD. BGR data has already been used to accelerate gene-disease validity curation of 36 genes evaluated by ClinGen's BGR Intellectual Disability (ID)-Autism (ASD) Gene Curation Expert Panel. In summary, the BGR is a resource for use by stakeholders interested in advancing translational research for brain genes and continues to recruit participants with clinically reported variants to establish a rich and well-characterized national resource to promote research on neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtorno do Espectro Autista/genética , Encéfalo , Sistema de Registros , Metiltransferases
3.
J Neurodev Disord ; 16(1): 12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509470

RESUMO

BACKGROUND: Specifying early developmental differences among neurodevelopmental disorders with distinct etiologies is critical to improving early identification and tailored intervention during the first years of life. Recent studies have uncovered important differences between infants with fragile X syndrome (FXS) and infants with familial history of autism spectrum disorder who go on to develop autism themselves (FH-ASD), including differences in brain development and behavior. Thus far, there have been no studies longitudinally investigating differential developmental skill profiles in FXS and FH-ASD infants. METHODS: The current study contrasted longitudinal trajectories of verbal (expressive and receptive language) and nonverbal (gross and fine motor, visual reception) skills in FXS and FH-ASD infants, compared to FH infants who did not develop ASD (FH-nonASD) and typically developing controls. RESULTS: Infants with FXS showed delays on a nonverbal composite compared to FH-ASD (as well as FH-nonASD and control) infants as early as 6 months of age. By 12 months an ordinal pattern of scores was established between groups on all domains tested, such that controls > FH-nonASD > FH-ASD > FXS. This pattern persisted through 24 months. Cognitive level differentially influenced developmental trajectories for FXS and FH-ASD. CONCLUSIONS: Our results demonstrate detectable group differences by 6 months between FXS and FH-ASD as well as differential trajectories on each domain throughout infancy. This work further highlights an earlier onset of global cognitive delays in FXS and, conversely, a protracted period of more slowly emerging delays in FH-ASD. Divergent neural and cognitive development in infancy between FXS and FH-ASD contributes to our understanding of important distinctions in the development and behavioral phenotype of these two groups.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Lactente , Humanos , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/psicologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/psicologia , Idioma , Cognição
4.
Mol Psychiatry ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383768

RESUMO

White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.

5.
Autism Res ; 17(4): 838-851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204321

RESUMO

Gestures are an important social communication skill that infants and toddlers use to convey their thoughts, ideas, and intentions. Research suggests that early gesture use has important downstream impacts on developmental processes, such as language learning. However, autistic children are more likely to have challenges in their gestural development. The current study expands upon previous literature on the differences in gesture use between young autistic and non-autistic toddlers by collecting data using a parent-report questionnaire called the MCDI-Words and Gestures at three time points, 12, 18, and 24 months of age. Results (N = 467) showed that high-likelihood infants who later met diagnostic criteria for ASD (n = 73 HL-ASD) have attenuated gesture growth from 12 to 24 months for both deictic gestures and symbolic gestures when compared to high-likelihood infants who later did not meet criteria for ASD (n = 249 HL-Neg) and low-likelihood infants who did not meet criteria for ASD (n = 145 LL-Neg). Other social communicative skills, like play behaviors and imitation, were also found to be impacted in young autistic children when compared to their non-autistic peers. Understanding early differences in social communication growth before a formal autism diagnosis can provide important insights for early intervention.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Lactente , Humanos , Transtorno Autístico/diagnóstico , Gestos , Transtorno do Espectro Autista/diagnóstico , Desenvolvimento da Linguagem
6.
Genet Med ; 26(3): 101035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059438

RESUMO

PURPOSE: Clinically ascertained variants are under-utilized in neurodevelopmental disorder research. We established the Brain Gene Registry (BGR) to coregister clinically identified variants in putative brain genes with participant phenotypes. Here, we report 179 genetic variants in the first 179 BGR registrants and analyze the proportion that were novel to ClinVar at the time of entry and those that were absent in other disease databases. METHODS: From 10 academically affiliated institutions, 179 individuals with 179 variants were enrolled into the BGR. Variants were cross-referenced for previous presence in ClinVar and for presence in 6 other genetic databases. RESULTS: Of 179 variants in 76 genes, 76 (42.5%) were novel to ClinVar, and 62 (34.6%) were absent from all databases analyzed. Of the 103 variants present in ClinVar, 37 (35.9%) were uncertain (ClinVar aggregate classification of variant of uncertain significance or conflicting classifications). For 5 variants, the aggregate ClinVar classification was inconsistent with the interpretation from the BGR site-provided classification. CONCLUSION: A significant proportion of clinical variants that are novel or uncertain are not shared, limiting the evidence base for new gene-disease relationships. Registration of paired clinical genetic test results with phenotype has the potential to advance knowledge of the relationships between genes and neurodevelopmental disorders.


Assuntos
Bases de Dados Genéticas , Variação Genética , Humanos , Variação Genética/genética , Testes Genéticos/métodos , Fenótipo , Encéfalo
7.
Nat Neurosci ; 27(1): 176-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996530

RESUMO

The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ∼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations.


Assuntos
Nascimento Prematuro , Masculino , Feminino , Humanos , Recém-Nascido , Pré-Escolar , Criança , Cognição , Encéfalo/diagnóstico por imagem , Neuroimagem , Imageamento por Ressonância Magnética
8.
Dev Cogn Neurosci ; 65: 101333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154378

RESUMO

Amygdala function is implicated in the pathogenesis of autism spectrum disorder (ASD) and anxiety. We investigated associations between early trajectories of amygdala growth and anxiety and ASD outcomes at school age in two longitudinal studies: high- and low-familial likelihood for ASD, Infant Brain Imaging Study (IBIS, n = 257) and typically developing (TD) community sample, Early Brain Development Study (EBDS, n = 158). Infants underwent MRI scanning at up to 3 timepoints from neonate to 24 months. Anxiety was assessed at 6-12 years. Linear multilevel modeling tested whether amygdala volume growth was associated with anxiety symptoms at school age. In the IBIS sample, children with higher anxiety showed accelerated amygdala growth from 6 to 24 months. ASD diagnosis and ASD familial likelihood were not significant predictors. In the EBDS sample, amygdala growth from birth to 24 months was associated with anxiety. More anxious children had smaller amygdala volume and slower rates of amygdala growth. We explore reasons for the contrasting results between high-familial likelihood for ASD and TD samples, grounding results in the broader literature of variable associations between early amygdala volume and later anxiety. Results have the potential to identify mechanisms linking early amygdala growth to later anxiety in certain groups.


Assuntos
Transtorno do Espectro Autista , Criança , Lactente , Recém-Nascido , Humanos , Ansiedade , Transtornos de Ansiedade , Encéfalo , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo
9.
JAMA Netw Open ; 6(12): e2348341, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113043

RESUMO

Importance: Perivascular spaces (PVS) and cerebrospinal fluid (CSF) are essential components of the glymphatic system, regulating brain homeostasis and clearing neural waste throughout the lifespan. Enlarged PVS have been implicated in neurological disorders and sleep problems in adults, and excessive CSF volume has been reported in infants who develop autism. Enlarged PVS have not been sufficiently studied longitudinally in infancy or in relation to autism outcomes or CSF volume. Objective: To examine whether enlarged PVS are more prevalent in infants who develop autism compared with controls and whether they are associated with trajectories of extra-axial CSF volume (EA-CSF) and sleep problems in later childhood. Design, Setting, and Participants: This prospective, longitudinal cohort study used data from the Infant Brain Imaging Study. Magnetic resonance images were acquired at ages 6, 12, and 24 months (2007-2017), with sleep questionnaires performed between ages 7 and 12 years (starting in 2018). Data were collected at 4 sites in North Carolina, Missouri, Pennsylvania, and Washington. Data were analyzed from March 2021 through August 2022. Exposure: PVS (ie, fluid-filled channels that surround blood vessels in the brain) that are enlarged (ie, visible on magnetic resonance imaging). Main Outcomes and Measures: Outcomes of interest were enlarged PVS and EA-CSF volume from 6 to 24 months, autism diagnosis at 24 months, sleep problems between ages 7 and 12 years. Results: A total of 311 infants (197 [63.3%] male) were included: 47 infants at high familial likelihood for autism (ie, having an older sibling with autism) who were diagnosed with autism at age 24 months, 180 high likelihood infants not diagnosed with autism, and 84 low likelihood control infants not diagnosed with autism. Sleep measures at school-age were available for 109 participants. Of infants who developed autism, 21 (44.7%) had enlarged PVS at 24 months compared with 48 infants (26.7%) in the high likelihood but no autism diagnosis group (P = .02) and 22 infants in the control group (26.2%) (P = .03). Across all groups, enlarged PVS at 24 months was associated with greater EA-CSF volume from ages 6 to 24 months (ß = 4.64; 95% CI, 0.58-8.72; P = .002) and more frequent night wakings at school-age (F = 7.76; η2 = 0.08; P = .006). Conclusions and Relevance: These findings suggest that enlarged PVS emerged between ages 12 and 24 months in infants who developed autism. These results add to a growing body of evidence that, along with excessive CSF volume and sleep dysfunction, the glymphatic system could be dysregulated in infants who develop autism.


Assuntos
Transtorno Autístico , Lactente , Humanos , Masculino , Criança , Pré-Escolar , Feminino , Transtorno Autístico/diagnóstico por imagem , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Sono
10.
Autism Res ; 16(9): 1670-1680, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439184

RESUMO

Existing research suggests that self-injurious behavior (SIB) is a relatively common interfering behavior that can occur across the lifespan of individuals with autism spectrum disorder (ASD). We previously reported that SIB or proto-injurious SIB at 12 months was related to increased risk of SIB at 24 months among a preschool sample of children with a high familial likelihood for ASD (Dimian et al., 2017). In the present study, we extend these findings, examine SIB occurrence, and associated potential risk factors at 36 months. The present sample included 149 infants with an older sibling with ASD (65.8% male) who completed assessments at ages 12, 24, and 36 months. Descriptive analyses and binary logistic regression models were utilized. SIB was more prevalent among those children who received a diagnosis of ASD. Logistic regression indicated that presence of SIB, stereotypy, hyper- and hypo- sensory responsivity, and lower intellectual functioning at age 12 months significantly predicted the occurrence of SIB at 36 months. These findings have implications for understanding developmental processes culminating in persistent SIB and may inform prevention programming.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Comportamento Autodestrutivo , Humanos , Masculino , Pré-Escolar , Criança , Lactente , Feminino , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/diagnóstico , Irmãos , Fatores de Risco , Comportamento Autodestrutivo/epidemiologia
11.
Stem Cell Reports ; 18(7): 1389-1393, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37352851

RESUMO

Debates about the ethics of human brain organoids have proceeded without the input of individuals whose brains are being modeled. Interviews with donors of biospecimens for brain organoid research revealed overall enthusiasm for brain organoids as a tool for biomedical discovery, alongside a desire for ongoing engagement with research teams to learn the results of the research, to allow transfer of decision-making authority over time, and to ensure ethical boundaries are not crossed. Future work is needed to determine the most feasible and resource-efficient way to longitudinally engage donors participating in brain organoid research.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Humanos , Doadores de Tecidos , Encéfalo , Organoides , Consentimento Livre e Esclarecido
12.
JAMA Netw Open ; 6(5): e2311543, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140923

RESUMO

Importance: Children with autism and their siblings exhibit executive function (EF) deficits early in development, but associations between EF and biological sex or early brain alterations in this population are largely unexplored. Objective: To investigate the interaction of sex, autism likelihood group, and structural magnetic resonance imaging alterations on EF in 2-year-old children at high familial likelihood (HL) and low familial likelihood (LL) of autism, based on having an older sibling with autism or no family history of autism in first-degree relatives. Design, Setting, and Participants: This prospective cohort study assessed 165 toddlers at HL (n = 110) and LL (n = 55) of autism at 4 university-based research centers. Data were collected from January 1, 2007, to December 31, 2013, and analyzed between August 2021 and June 2022 as part of the Infant Brain Imaging Study. Main Outcomes and Measures: Direct assessments of EF and acquired structural magnetic resonance imaging were performed to determine frontal lobe, parietal lobe, and total cerebral brain volume. Results: A total of 165 toddlers (mean [SD] age, 24.61 [0.95] months; 90 [54%] male, 137 [83%] White) at HL for autism (n = 110; 17 diagnosed with ASD) and LL for autism (n = 55) were studied. The toddlers at HL for autism scored lower than the toddlers at LL for autism on EF tests regardless of sex (mean [SE] B = -8.77 [4.21]; 95% CI, -17.09 to -0.45; η2p = 0.03). With the exclusion of toddlers with autism, no group (HL vs LL) difference in EF was found in boys (mean [SE] difference, -7.18 [4.26]; 95% CI, 1.24-15.59), but EF was lower in HL girls than LL girls (mean [SE] difference, -9.75 [4.34]; 95% CI, -18.32 to -1.18). Brain-behavior associations were examined, controlling for overall cerebral volume and developmental level. Sex differences in EF-frontal (B [SE] = 16.51 [7.43]; 95% CI, 1.36-31.67; η2p = 0.14) and EF-parietal (B [SE] = 17.68 [6.99]; 95% CI, 3.43-31.94; η2p = 0.17) associations were found in the LL group but not the HL group (EF-frontal: B [SE] = -1.36 [3.87]; 95% CI, -9.07 to 6.35; η2p = 0.00; EF-parietal: B [SE] = -2.81 [4.09]; 95% CI, -10.96 to 5.34; η2p = 0.01). Autism likelihood group differences in EF-frontal (B [SE] = -9.93 [4.88]; 95% CI, -19.73 to -0.12; η2p = 0.08) and EF-parietal (B [SE] = -15.44 [5.18]; 95% CI, -25.86 to -5.02; η2p = 0.16) associations were found in girls not boys (EF-frontal: B [SE] = 6.51 [5.88]; 95% CI, -5.26 to 18.27; η2p = 0.02; EF-parietal: B [SE] = 4.18 [5.48]; 95% CI, -6.78 to 15.15; η2p = 0.01). Conclusions and Relevance: This cohort study of toddlers at HL and LL of autism suggests that there is an association between sex and EF and that brain-behavior associations in EF may be altered in children at HL of autism. Furthermore, EF deficits may aggregate in families, particularly in girls.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Lactente , Humanos , Masculino , Feminino , Pré-Escolar , Adulto Jovem , Adulto , Função Executiva , Transtorno Autístico/diagnóstico por imagem , Estudos de Coortes , Transtorno do Espectro Autista/epidemiologia , Estudos Prospectivos
13.
Dev Cogn Neurosci ; 61: 101240, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060675

RESUMO

Decades of research have established that the home language environment, especially quality of caregiver speech, supports language acquisition during infancy. However, the neural mechanisms behind this phenomenon remain under studied. In the current study, we examined associations between the home language environment and structural coherence of white matter tracts in 52 typically developing infants from English speaking homes in a western society. Infants participated in at least one MRI brain scan when they were 3, 6, 12, and/or 24 months old. Home language recordings were collected when infants were 9 and/or 15 months old. General linear regression models indicated that infants who heard the most adult words and participated in the most conversational turns at 9 months of age also had the lowest fractional anisotropy in the left posterior parieto-temporal arcuate fasciculus at 24 months. Similarly, infants who vocalized the most at 9 months also had the lowest fractional anisotropy in the same tract at 6 months of age. This is one of the first studies to report significant associations between caregiver speech collected in the home and white matter structural coherence in the infant brain. The results are in line with prior work showing that protracted white matter development during infancy confers a cognitive advantage.


Assuntos
Substância Branca , Adulto , Humanos , Lactente , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Idioma , Encéfalo , Imageamento por Ressonância Magnética
14.
J Autism Dev Disord ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017863

RESUMO

This study investigated the extent to which sensory responsivity in infancy contributes to adaptive behavior development among toddlers at high-familial likelihood for autism. Prospective, longitudinal data were analyzed for 218 children, 58 of whom received an autism diagnosis. Results indicated that sensory profiles at age one year (hyperresponsivity, sensory seeking) were negatively associated with later adaptive behavior, particularly for socialization, at age 3 years regardless of diagnostic status. These results suggest that early differences in sensory responsivity may have downstream developmental consequences related to social development among young children with high-familial likelihood for autism.

15.
Biol Psychiatry ; 93(10): 905-920, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932005

RESUMO

Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are regulated by dynamic gene expression patterns that likely play an important role in establishing an individual's risk for later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established to facilitate large-scale imaging genetics studies in infancy and early childhood.


Assuntos
Encéfalo , Transtornos Mentais , Feminino , Gravidez , Pré-Escolar , Humanos , Encéfalo/diagnóstico por imagem , Transtornos Mentais/genética , Neuroimagem/métodos , Fenótipo
16.
Biol Psychiatry Glob Open Sci ; 3(1): 149-161, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712571

RESUMO

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods: Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results: Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions: We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.

17.
Dev Sci ; 26(3): e13336, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36222317

RESUMO

Social motivation-the psychobiological predisposition for social orienting, seeking social contact, and maintaining social interaction-manifests in early infancy and is hypothesized to be foundational for social communication development in typical and atypical populations. However, the lack of infant social-motivation measures has hindered delineation of associations between infant social motivation, other early-arising social abilities such as joint attention, and language outcomes. To investigate how infant social motivation contributes to joint attention and language, this study utilizes a mixed longitudinal sample of 741 infants at high (HL = 515) and low (LL = 226) likelihood for ASD. Using moderated nonlinear factor analysis (MNLFA), we incorporated items from parent-report measures to establish a novel latent factor model of infant social motivation that exhibits measurement invariance by age, sex, and familial ASD likelihood. We then examined developmental associations between 6- and 12-month social motivation, joint attention at 12-15 months, and language at 24 months of age. On average, greater social-motivation growth from 6-12 months was associated with greater initiating joint attention (IJA) and trend-level increases in sophistication of responding to joint attention (RJA). IJA and RJA were both positively associated with 24-month language abilities. There were no additional associations between social motivation and future language in our path model. These findings substantiate a novel, theoretically driven approach to modeling social motivation and suggest a developmental cascade through which social motivation impacts other foundational skills. These findings have implications for the timing and nature of intervention targets to support social communication development in infancy. HIGHLIGHTS: We describe a novel, theoretically based model of infant social motivation wherein multiple parent-reported indicators contribute to a unitary latent social-motivation factor. Analyses revealed social-motivation factor scores exhibited measurement invariance for a longitudinal sample of infants at high and low familial ASD likelihood. Social-motivation growth from ages 6-12 months is associated with better 12-15-month joint attention abilities, which in turn are associated with greater 24-month language skills. Findings inform timing and targets of potential interventions to support healthy social communication in the first year of life.


Assuntos
Transtorno do Espectro Autista , Humanos , Lactente , Motivação , Idioma , Comunicação , Atenção
18.
Biol Psychiatry ; 93(1): 8-17, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307327

RESUMO

BACKGROUND: Bipolar disorder is a highly heritable neuropsychiatric condition affecting more than 1% of the human population. Lithium salts are commonly prescribed as a mood stabilizer for individuals with bipolar disorder. Lithium is clinically effective in approximately half of treated individuals, and their genetic backgrounds are known to influence treatment outcomes. While the mechanism of lithium's therapeutic action is unclear, it stimulates adult neural progenitor cell proliferation, similar to some antidepressant drugs. METHODS: To identify common genetic variants that modulate lithium-induced proliferation, we conducted an EdU incorporation assay in a library of 80 genotyped human neural progenitor cells treated with lithium. These data were used to perform a genome-wide association study to identify common genetic variants that influence lithium-induced neural progenitor cell proliferation. We manipulated the expression of a putatively causal gene using CRISPRi/a (clustered regularly interspaced short palindromic repeats interference/activation) constructs to experimentally verify lithium-induced proliferation effects. RESULTS: We identified a locus on chr3p21.1 associated with lithium-induced proliferation. This locus is also associated with bipolar disorder risk, schizophrenia risk, and interindividual differences in intelligence. We identified a single gene, GNL3, whose expression temporally increased in an allele-specific fashion following lithium treatment. Experimentally increasing the expression of GNL3 led to increased proliferation under baseline conditions, while experimentally decreasing GNL3 expression suppressed lithium-induced proliferation. CONCLUSIONS: Our experiments reveal that common genetic variation modulates lithium-induced neural progenitor proliferation and that GNL3 expression is necessary for the full proliferation-stimulating effects of lithium. These results suggest that performing genome-wide associations in genetically diverse human cell lines is a useful approach to discover context-specific pharmacogenomic effects.


Assuntos
Transtorno Bipolar , Lítio , Adulto , Humanos , Lítio/farmacologia , Lítio/metabolismo , Lítio/uso terapêutico , Estudo de Associação Genômica Ampla/métodos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Variação Genética , Proliferação de Células , Proteínas Nucleares/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/uso terapêutico
19.
Med Image Anal ; 84: 102696, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495600

RESUMO

Brain pathologies often manifest as partial or complete loss of tissue. The goal of many neuroimaging studies is to capture the location and amount of tissue changes with respect to a clinical variable of interest, such as disease progression. Morphometric analysis approaches capture local differences in the distribution of tissue or other quantities of interest in relation to a clinical variable. We propose to augment morphometric analysis with an additional feature extraction step based on unbalanced optimal transport. The optimal transport feature extraction step increases statistical power for pathologies that cause spatially dispersed tissue loss, minimizes sensitivity to shifts due to spatial misalignment or differences in brain topology, and separates changes due to volume differences from changes due to tissue location. We demonstrate the proposed optimal transport feature extraction step in the context of a volumetric morphometric analysis of the OASIS-1 study for Alzheimer's disease. The results demonstrate that the proposed approach can identify tissue changes and differences that are not otherwise measurable.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neuroimagem/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Progressão da Doença
20.
Shape Med Imaging (2023) ; 14350: 248-258, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38425723

RESUMO

In this study, we introduce a novel approach for the analysis and interpretation of 3D shapes, particularly applied in the context of neuroscientific research. Our method captures 2D perspectives from various vantage points of a 3D object. These perspectives are subsequently analyzed using 2D Convolutional Neural Networks (CNNs), uniquely modified with custom pooling mechanisms. We sought to assess the efficacy of our approach through a binary classification task involving subjects at high risk for Autism Spectrum Disorder (ASD). The task entailed differentiating between high-risk positive and high-risk negative ASD cases. To do this, we employed brain attributes like cortical thickness, surface area, and extra-axial cerebral spinal measurements. We then mapped these measurements onto the surface of a sphere and subsequently analyzed them via our bespoke method. One distinguishing feature of our method is the pooling of data from diverse views using our icosahedron convolution operator. This operator facilitates the efficient sharing of information between neighboring views. A significant contribution of our method is the generation of gradient-based explainability maps, which can be visualized on the brain surface. The insights derived from these explainability images align with prior research findings, particularly those detailing the brain regions typically impacted by ASD. Our innovative approach thereby substantiates the known understanding of this disorder while potentially unveiling novel areas of study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...