Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Evolution ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912848

RESUMO

Advancing male age is often hypothesised to reduce both, male fertility and offspring quality due to reproductive senescence. However, the effects of advancing male age on reproductive output and offspring quality are not always deleterious. For example, older fathers might buffer effects of reproductive senescence by terminally investing in reproduction. Similarly, males that survive to reproduce at an old age, might carry alleles that confer high viability (viability selection) which are then inherited by offspring, or might have high reproductive potential (selective disappearance). Differentiating these mechanisms requires an integrated experimental study of paternal survival and reproductive performance, as well as offspring quality, which is currently lacking. Using a cross-sectional study in Drosophila melanogaster, we test the effects of paternal age at conception (PAC) on paternal survival and reproductive success, and on the lifespans of sons. We discover that mating at an old age is linked with decreased future male survival, suggesting that mating-induced mortality is possibly due to old fathers being frail. We find no evidence for terminal investment, and show that reproductive senescence in fathers does not onset until their late-adult life. Additionally, we find that as a father's lifespan increases, his probability of siring offspring increases, for older PAC treatments only. Lastly, we show that sons born to older fathers live longer than those born to younger fathers, due to viability selection. Collectively, our results suggest that advancing paternal age is not necessarily associated with deleterious effects for offspring, and may even lead to older fathers producing longer-lived offspring.

2.
Nat Commun ; 15(1): 558, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228708

RESUMO

Male reproductive traits such as ejaculate size and quality, are expected to decline with advancing age due to senescence. It is however unclear whether this expectation is upheld across taxa. We perform a meta-analysis on 379 studies, to quantify the effects of advancing male age on ejaculate traits across 157 species of non-human animals. Contrary to predictions, we find no consistent pattern of age-dependent changes in ejaculate traits. This result partly reflects methodological limitations, such as studies sampling a low proportion of adult lifespan, or the inability of meta-analytical approaches to document non-linear ageing trajectories of ejaculate traits; which could potentially lead to an underestimation of senescence. Yet, we find taxon-specific differences in patterns of ejaculate senescence. For instance, older males produce less motile and slower sperm in ray-finned fishes, but larger ejaculates in insects, compared to younger males. Notably, lab rodents show senescence in most ejaculate traits measured. Our study challenges the notion of universal reproductive senescence, highlighting the need for controlled methodologies and a more nuanced understanding of reproductive senescence, cognisant of taxon-specific biology, experimental design, selection pressures, and life-history.


Assuntos
Sêmen , Espermatozoides , Animais , Masculino , Reprodução , Insetos , Envelhecimento
3.
Nat Commun ; 14(1): 1006, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813810

RESUMO

In principle, temporal fluctuations in the potential for sexual selection can be estimated as changes in intrasexual variance in reproductive success (i.e. the opportunity for selection). However, we know little about how opportunity measures vary over time, and the extent to which such dynamics are affected by stochasticity. We use published mating data from multiple species to investigate temporal variation in the opportunity for sexual selection. First, we show that the opportunity for precopulatory sexual selection typically declines over successive days in both sexes and shorter sampling periods lead to substantial overestimates. Second, by utilising randomised null models, we also find that these dynamics are largely explained by an accumulation of random matings, but that intrasexual competition may slow temporal declines. Third, using data from a red junglefowl (Gallus gallus) population, we show that declines in precopulatory measures over a breeding period were mirrored by declines in the opportunity for both postcopulatory and total sexual selection. Collectively, we show that variance-based metrics of selection change rapidly, are highly sensitive to sampling durations, and likely lead to substantial misinterpretation if used as indicators of sexual selection. However, simulations can begin to disentangle stochastic variation from biological mechanisms.


Assuntos
Preferência de Acasalamento Animal , Seleção Sexual , Animais , Feminino , Masculino , Comportamento Sexual Animal , Reprodução , Galinhas
4.
J Hered ; 112(3): 250-259, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33758922

RESUMO

The sex chromosomes often follow unusual evolutionary trajectories. In particular, the sex-limited chromosomes frequently exhibit a small but unusual gene content in numerous species, where many genes have undergone massive gene amplification. The reasons for this remain elusive with a number of recent studies implicating meiotic drive, sperm competition, genetic drift, and gene conversion in the expansion of gene families. However, our understanding is primarily based on Y chromosome studies as few studies have systematically tested for copy number variation on W chromosomes. Here, we conduct a comprehensive investigation into the abundance, variability, and evolution of ampliconic genes on the avian W. First, we quantified gene copy number and variability across the duck W chromosome. We find a limited number of gene families as well as conservation in W-linked gene copy number across duck breeds, indicating that gene amplification may not be such a general feature of sex chromosome evolution as Y studies would initially suggest. Next, we investigated the evolution of HINTW, a prominent ampliconic gene family hypothesized to play a role in female reproduction and oogenesis. In particular, we investigated the factors driving the expansion of HINTW using contrasts between modern chicken and duck breeds selected for different female-specific selection regimes and their wild ancestors. Although we find the potential for selection related to fecundity in explaining small-scale gene amplification of HINTW in the chicken, purifying selection seems to be the dominant mode of evolution in the duck. Together, this challenges the assumption that HINTW is key for female fecundity across the avian phylogeny.


Assuntos
Variações do Número de Cópias de DNA , Evolução Molecular , Animais , Galinhas/genética , Feminino , Humanos , Cromossomos Sexuais/genética , Cromossomo Y
5.
J Anim Ecol ; 90(5): 1288-1306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630314

RESUMO

Despite increasing evidence of the importance of repeatable among-individual differences in behaviour (animal personality) in ecology and evolution, little remains known about the role of animal personalities in sexual selection. Here, we present an investigation of the hypothesis that the personalities of individuals and their sexual partners play a role in different episodes of sexual selection, and the extent to which these effects are modulated by the social environment. We first examined how two repeatable behaviours-exploration and boldness-are associated with pre- and postcopulatory sexual selection in male red junglefowl Gallus gallus, using replicate groups across three experimental sex ratio treatments. We further explored how the social environment modulates relationships between male personality and mating performance, and whether mating is assortative or disassortative with respect to exploration or boldness. Finally, we examined behavioural mechanisms linking personality with mating performance. Across all sex ratios, the fastest and slowest exploring males courted females proportionally less, and faster exploring males associated with females more and received more sexual solicitations. In female-biased groups, the fastest and slowest exploring males experienced the highest mating success and lowest sperm competition intensity. Faster exploring males also obtained more mates in female-biased groups when their competitors were, on average, slower exploring, and the proportion of matings obtained by fast-exploring males decreased with the proportion of fast-exploring males in a group, consistent with negative frequency-dependent sexual selection. While boldness did not predict mating performance, there was a tendency for individuals to mate disassortatively with respect to boldness. Collectively, our results suggest that male exploration can play a role in sexual selection, and that sexual selection on personality is complex and contingent on the social environment.


Assuntos
Preferência de Acasalamento Animal , Animais , Galinhas , Feminino , Masculino , Personalidade , Comportamento Sexual Animal , Seleção Sexual
7.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200081, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070718

RESUMO

Studies of birds have made a fundamental contribution to elucidating sperm competition processes, experimentally demonstrating the role of individual mechanisms in competitive fertilization. However, the relative importance of these mechanisms and the way in which they interact under natural conditions remain largely unexplored. Here, we conduct a detailed behavioural study of freely mating replicate groups of red junglefowl, Gallus gallus, to predict the probability that competing males fertilize individual eggs over the course of 10-day trials. Remating frequently with a female and mating last increased a male's probability of fertilization, but only for eggs ovulated in the last days of a trial. Conversely, older males, and those mating with more polyandrous females, had consistently lower fertilization success. Similarly, resistance to a male's mating attempts, particularly by younger females, reduced fertilization probability. After considering these factors, male social status, partner relatedness and the estimated state of male extragonadal sperm reserves did not predict sperm competition outcomes. These results shed new light on sperm competition dynamics in taxa such as birds, with prolonged female sperm storage and staggered fertilizations. This article is part of the theme issue 'Fifty years of sperm competition'.


Assuntos
Galinhas/fisiologia , Copulação , Fertilização/fisiologia , Espermatozoides/fisiologia , Animais , Masculino
9.
Trends Ecol Evol ; 35(3): 220-234, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31952837

RESUMO

All multicellular organisms host microbial communities in and on their bodies, and these microbiomes can have major influences on host biology. Most research has focussed on the oral, skin, and gut microbiomes, whereas relatively little is known about the reproductive microbiome. Here, we review empirical evidence to show that reproductive microbiomes can have significant effects on the reproductive function and performance of males and females. We then discuss the likely repercussions of these effects for evolutionary processes related to sexual selection and sexual conflict, as well as mating systems and reproductive isolation. We argue that knowledge of the reproductive microbiome is fundamental to our understanding of the evolutionary ecology of reproductive strategies and sexual dynamics of host organisms.


Assuntos
Microbiota , Isolamento Reprodutivo , Animais , Evolução Biológica , Feminino , Masculino , Reprodução , Comportamento Sexual Animal
10.
J Evol Biol ; 33(1): 22-40, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529557

RESUMO

Despite widespread evidence that mating and intrasexual competition are costly, relatively little is known about how these costs dynamically change male and female phenotypes. Here, we test multiple hypotheses addressing this question in replicate flocks of red junglefowl (Gallus gallus). First, we test the interrelationships between social status, comb size (a fleshy ornament) and body mass at the onset of a mating trial. While comb size covaried positively with body mass across individuals of both sexes, comb size was positively related to social status in females but not in males. Second, we test for changes within individuals in body mass and comb size throughout the mating trial. Both body mass and comb size declined at the end of a trial in both sexes, suggesting that mating effort and exposure to the opposite sex are generally costly. Males lost more body mass if they (a) were socially subordinate, (b) were chased by other males or (c) mated frequently, indicating that subordinate status and mating are independently costly. Conversely, females lost more body mass if they were exposed to a higher frequency of coerced matings, suggesting costs associated with male sexual harassment and female resistance, although costs of mating per se could not be completely ruled out. Neither competitive nor mating interactions predicted comb size change in either sex. Collectively, these results support the notion that sex-specific costs associated with social status and mating effort result in differential, sex-specific dynamics of phenotypic change.


Assuntos
Galinhas/fisiologia , Hierarquia Social , Comportamento Sexual Animal/fisiologia , Animais , Tamanho Corporal , Feminino , Masculino
11.
PeerJ ; 7: e7988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720113

RESUMO

In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking" workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field. These questions are organized into four thematic sections we deem essential to the field. First we focus on the evolution of mate choice and mating systems. Variation in mate quality can generate both competition and choice in the opposite sex, with implications for the evolution of mating systems. Limitations on mate choice may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, mating systems, especially with regard to polyandry. Second, we focus on how sender and receiver mechanisms shape signal design. Mediation of honest signal content likely depends on integration of temporally variable social and physiological costs that are challenging to measure. We view the neuroethology of sensory and cognitive receiver biases as the main key to signal form and the 'aesthetic sense' proposed by Darwin. Since a receiver bias is sufficient to both initiate and drive ornament or armament exaggeration, without a genetically correlated or even coevolving receiver, this may be the appropriate 'null model' of sexual selection. Thirdly, we focus on the genetic architecture of sexually selected traits. Despite advances in modern molecular techniques, the number and identity of genes underlying performance, display and secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in the context of long-term field studies will reveal constraints and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of speciation. Population divergence and speciation are often influenced by an interplay between sexual and natural selection. The extent to which sexual selection promotes or counteracts population divergence may vary depending on the genetic architecture of traits as well as the covariance between mating competition and local adaptation. Additionally, post-copulatory processes, such as selection against heterospecific sperm, may influence the importance of sexual selection in speciation. We propose that efforts to resolve these four themes can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues of research to advance this progress.

12.
Front Immunol ; 10: 2222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620133

RESUMO

The leukocyte receptor complex (LRC) in humans encodes many receptors with immunoglobulin-like (Ig-like) extracellular domains, including the killer Ig-like receptors (KIRs) expressed on natural killer (NK) cells among others, the leukocyte Ig-like receptors (LILRs) expressed on myeloid and B cells, and an Fc receptor (FcR), all of which have important roles in the immune response. These highly-related genes encode activating receptors with positively-charged residues in the transmembrane region, inhibitory receptors with immuno-tyrosine based motifs (ITIMs) in the cytoplasmic tail, and bi-functional receptors with both. The related chicken Ig-like receptors (ChIRs) are almost all found together on a microchromosome, with over 100 activating (A), inhibitory (B), and bi-functional (AB) genes, bearing either one or two extracellular Ig-like domains, interspersed over 500-1,000 kB in the genome of an individual chicken. Sequencing studies have suggested rapid divergence and little overlap between ChIR haplotypes, so we wished to begin to understand their genetics. We chose to use a hybridization technique, reference strand-mediated conformational analysis (RSCA), to examine the ChIR-AB1 family, with a moderate number of genes dispersed across the microchromosome. Using fluorescently-labeled references (FLR), we found that RSCA and sequencing of ChIR-AB1 extracellular exon gave two groups of peaks with mobility correlated with sequence relationship to the FLR. We used this system to examine widely-used and well-characterized experimental chicken lines, finding only one or a few simple ChIR haplotypes for each line, with similar numbers of peaks overall. We found much more complicated patterns from a broiler line from a commercial breeder and a flock of red junglefowl, but trios of parents and offspring from another commercial chicken line show that the complicated patterns are due to heterozygosity, indicating a relatively stable number of peaks within haplotypes of these birds. Some ChIR-AB1 peaks were found in all individuals from the commercial lines, and some of these were shared with red junglefowl and the experimental lines derived originally from egg-laying chickens. Overall, this analysis suggests that there are some simple features underlying the apparent complexity of the ChIR locus.


Assuntos
Anticorpos Biespecíficos/genética , Galinhas/genética , Galinhas/imunologia , Receptores Imunológicos/genética , Animais , Anticorpos Biespecíficos/imunologia , Haplótipos , Família Multigênica/genética , Família Multigênica/imunologia , Receptores Imunológicos/imunologia
13.
Proc Biol Sci ; 286(1913): 20191734, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31615354

RESUMO

Recent work indicates that social structure has extensive implications for patterns of sexual selection and sexual conflict. However, little is known about the individual variation in social behaviours linking social structure to sexual interactions. Here, we use network analysis of replicate polygynandrous groups of red junglefowl (Gallus gallus) to show that the association between social structure and sexual interactions is underpinned by differential female sociality. Sexual dynamics are largely explained by a core group of highly social, younger females, which are more fecund and more polyandrous, and thus associated with more intense postcopulatory competition for males. By contrast, less fecund females from older cohorts, which tend to be socially dominant, avoid male sexual attention by clustering together and perching on branches, and preferentially reproduce with dominant males by more exclusively associating and mating with them. Collectively, these results indicate that individual females occupy subtly different social niches and demonstrate that female sociality can be an important factor underpinning the landscape of intrasexual competition and the emergent structure of animal societies.


Assuntos
Galinhas/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Masculino , Preferência de Acasalamento Animal , Reprodução , Comportamento Social
14.
Proc Natl Acad Sci U S A ; 116(36): 17925-17933, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431535

RESUMO

Sperm competition favors large, costly ejaculates, and theory predicts the evolution of allocation strategies that enable males to plastically tailor ejaculate expenditure to sperm competition threat. While greater sperm transfer in response to a perceived increase in the risk of sperm competition is well-supported, we have a poor understanding of whether males (i) respond to changes in perceived intensity of sperm competition, (ii) use the same allocation rules for sperm and seminal fluid, and (iii) experience changes in current and future reproductive performance as a result of ejaculate compositional changes. Combining quantitative proteomics with fluorescent sperm labeling, we show that Drosophila melanogaster males exercise independent control over the transfer of sperm and seminal fluid proteins (SFPs) under different levels of male-male competition. While sperm transfer peaks at low competition, consistent with some theoretical predictions based on sperm competition intensity, the abundance of transferred SFPs generally increases at high competition levels. However, we find that clusters of SFPs vary in the directionality and sensitivity of their response to competition, promoting compositional change in seminal fluid. By tracking the degree of decline in male mating probability and offspring production across successive matings, we provide evidence that ejaculate compositional change represents an adaptive response to current sperm competition, but one that comes at a cost to future mating performance. Our work reveals a previously unknown divergence in ejaculate component allocation rules, exposes downstream costs of elevated ejaculate investment, and ultimately suggests a central role for ejaculate compositional plasticity in sexual selection.


Assuntos
Drosophila melanogaster/metabolismo , Proteoma , Proteômica , Espermatozoides/metabolismo , Animais , Masculino , Preferência de Acasalamento Animal , Proteômica/métodos , Reprodução , Proteínas de Plasma Seminal/metabolismo , Comportamento Sexual Animal
15.
Curr Top Dev Biol ; 135: 287-313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155361

RESUMO

The moment of the fertilization of an egg by a spermatozoon-the point of "sperm success"-is a key milestone in the biology of sexually reproducing species and is a fundamental requirement for offspring production. Fertilization also represents the culmination of a suite of sexually selected processes in both sexes and is commonly used as a landmark to measure reproductive success. Sperm success is heavily dependent upon interactions with other key aspects of male and female biology, with the immune system among the most important. The immune system is vital to maintaining health in both sexes; however, immune reactions can also have antagonistic effects on sperm success. The effects of immunity on sperm success are diverse, and may include trade-offs in the male between investment in the production or protection of sperm, as well as more direct, hostile, immune responses to sperm within the female, and potentially the male, reproductive tract. Here, we review current understanding of where the biology of immunity and sperm meet, and identify the gaps in our knowledge.


Assuntos
Imunidade , Espermatozoides/citologia , Animais , Autoimunidade , Humanos , Sistema Imunitário/metabolismo , Masculino
16.
Sci Rep ; 9(1): 5852, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971704

RESUMO

Theory predicts that males will strategically invest in ejaculates according to the value of mating opportunities. While strategic sperm allocation has been studied extensively, little is known about concomitant changes in seminal fluid (SF) and its molecular composition, despite increasing evidence that SF proteins (SFPs) are fundamental in fertility and sperm competition. Here, we show that in male red junglefowl, Gallus gallus, along with changes in sperm numbers and SF investment, SF composition changed dynamically over successive matings with a first female, immediately followed by mating with a second, sexually novel female. The SF proteome exhibited a pattern of both protein depletion and enrichment over successive matings, including progressive increases in immunity and plasma proteins. Ejaculates allocated to the second female had distinct proteomic profiles, where depletion of many SFPs was compensated by increased investment in others. This response was partly modulated by male social status: when mating with the second, novel female, subdominants (but not dominants) preferentially invested in SFPs associated with sperm composition, which may reflect status-specific differences in mating rates, sperm maturation and sperm competition. Global proteomic SF analysis thus reveals that successive matings trigger rapid, dynamic SFP changes driven by a combination of depletion and strategic allocation.


Assuntos
Galinhas/metabolismo , Proteoma/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Feminino , Masculino , Análise de Componente Principal , Proteoma/análise , Proteínas de Plasma Seminal/metabolismo , Comportamento Sexual Animal , Espectrometria de Massas em Tandem
17.
Evolution ; 73(5): 1025-1036, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941751

RESUMO

The social structure of populations plays a key role in shaping variation in sexual selection. In nature, sexual selection occurs in communities of interacting species; however, heterospecifics are rarely included in characterizations of social structure. Heterospecifics can influence the reproductive outcomes of intrasexual competition by interfering with intraspecific sexual interactions (interspecific reproductive interference [IRI]). We outline the need for studies of sexual selection to incorporate heterospecifics as part of the social environment. We use simulations to show that classic predictions for the effect of social structure on sexual selection are altered by an interaction between social structure and IRI. This interaction has wide-ranging implications for patterns of sexual conflict and kin-selected reproductive strategies in socially structured populations. Our work bridges the gap between sexual selection research on social structure and IRI, and highlights future directions to study sexual selection in interacting communities.


Assuntos
Aedes/genética , Genética Populacional , Hiperfagia/genética , Seleção Genética , Animais , Evolução Biológica , Comportamento Competitivo , Drosophila melanogaster/genética , Ecologia , Feminino , Masculino , Reprodução , Comportamento Sexual Animal , Especificidade da Espécie
18.
Nat Commun ; 10(1): 283, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655522

RESUMO

Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and - as a result - weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophila.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Peptídeos/fisiologia , Receptores de Peptídeos/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Peptídeos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Reprodução/fisiologia
19.
Proc Natl Acad Sci U S A ; 115(1): E53-E61, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255016

RESUMO

Sexual selection is a fundamental evolutionary process but remains debated, particularly in the complexity of polyandrous populations where females mate with multiple males. This lack of resolution is partly because studies have largely ignored the structure of the sexual network, that is, the pattern of mate sharing. Here, we quantify what we call mating assortment with network analysis to specify explicitly the indirect as well as direct relationships between partners. We first review empirical studies, showing that mating assortment varies considerably in nature, due largely to basic properties of the sexual network (size and density) and partly to nonrandom patterns of mate sharing. We then use simulations to show how variation in mating assortment interacts with population-level polyandry to determine the strength of sexual selection on males. Controlling for average polyandry, positive mating assortment, arising when more polygynous males tend to mate with more polyandrous females, drastically decreases the intensity of precopulatory sexual selection on male mating success (Bateman gradient) and the covariance between male mating success and postcopulatory paternity share. Average polyandry independently weakened some measures of sexual selection and crucially also impacted sexual selection indirectly by constraining mating assortment through the saturation of the mating network. Mating assortment therefore represents a key-albeit overlooked-modulator of the strength of sexual selection. Our results show that jointly considering sexual network structure and average polyandry more precisely describes the strength of sexual selection.


Assuntos
Evolução Biológica , Preferência de Acasalamento Animal/fisiologia , Modelos Biológicos , Seleção Genética/fisiologia , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...