Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 517: 113483, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100343

RESUMO

Routine batch quality testing before vaccine release, notably for potency evaluation, still relies on animal use for several animal and human vaccines. In this context, the VAC2VAC project is a public-private consortium of 22 partners funded by EU whose the main objective is to reduce the number of animal used for batch testing by developing immunoassays that could be implemented for routine potency assessment of vaccines. This paper focused on the development of a Luminex-based multiplex assay to monitor the consistency of antigen quantity and quality throughout the production process of DTaP vaccines from two human vaccine manufacturers. Indepth characterized monoclonal antibody pairs were used for development and optimization of the Luminex assay with non-adsorbed and adsorbed antigens and with complete vaccine formulations from both manufacturers. The multiplex assay demonstrated good specificity, reproducibility and absence of cross-reactivity. Analysis of over and underdosed formulations, heat and H2O2-degraded products as well as batch to batch consistency of vaccines from both manufacturers brought the proof of concept for a future application of the multiplex immunoassay as a useful tool in the frame of DTaP vaccine quality control.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Difteria , Tétano , Coqueluche , Animais , Humanos , Tétano/prevenção & controle , Vacina contra Difteria, Tétano e Coqueluche , Coqueluche/prevenção & controle , Difteria/prevenção & controle , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Imunização Secundária , Antígenos , Imunoensaio , Anticorpos Antibacterianos
2.
Front Microbiol ; 14: 1036386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876086

RESUMO

Bordetella pertussis is the bacterial causative agent of whooping cough, a serious respiratory illness. An extensive knowledge on its virulence regulation and metabolism is a key factor to ensure pertussis vaccine manufacturing process robustness. The aim of this study was to refine our comprehension of B. pertussis physiology during in vitro cultures in bioreactors. A longitudinal multi-omics analysis was carried out over 26 h small-scale cultures of B. pertussis. Cultures were performed in batch mode and under culture conditions intending to mimic industrial processes. Putative cysteine and proline starvations were, respectively, observed at the beginning of the exponential phase (from 4 to 8 h) and during the exponential phase (18 h 45 min). As revealed by multi-omics analyses, the proline starvation induced major molecular changes, including a transient metabolism with internal stock consumption. In the meantime, growth and specific total PT, PRN, and Fim2 antigen productions were negatively affected. Interestingly, the master virulence-regulating two-component system of B. pertussis (BvgASR) was not evidenced as the sole virulence regulator in this in vitro growth condition. Indeed, novel intermediate regulators were identified as putatively involved in the expression of some virulence-activated genes (vags). Such longitudinal multi-omics analysis applied to B. pertussis culture process emerges as a powerful tool for characterization and incremental optimization of vaccine antigen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...