Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 166(2): 593-599, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392817

RESUMO

Enterococcus phage Nonaheksakonda was isolated from wastewater, using a vancomycin-resistant strain of the opportunistic pathogen Enterococcus faecalis (VRE) as a host. Nonaheksakonda is a lytic phage infecting E. faecalis V583 and clinical isolates with at least four different multi-locus sequence types (MLSTs). The genome is a 41.9-kb double-stranded DNA molecule (34.6% GC) with 74 coding sequences. Comparative analysis revealed only one close relative, Enterococcus phage heks. All other phages had low protein similarity and shared less than 54% nucleotide sequence identity with phage Nonaheksakonda. The most similar phages were all classified and unclassified efquatroviruses. We propose that the phages Nonaheksakonda and heks represent a novel genus within the family Siphoviridae, order Caudovirales, for which we propose the name "Nonaheksakondavirus".


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Enterococcus faecalis/virologia , Siphoviridae/genética , Siphoviridae/isolamento & purificação , DNA/genética , Genoma Viral/genética
2.
Phage (New Rochelle) ; 1(4): 230-236, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36147286

RESUMO

Background: Clostridium perfringens is a well known swine pathogen. C. perfringens type A is considered the causative agent of enteric diseases in neonatal and weaned piglets. Phage therapy using C. perfringens phages in vivo has previously proved effective. Materials and Methods: Pig fecal samples were used to isolate phages, with Clostridium perfringens type A as host. Complete genome sequencing, comparative genomics, a proteome analysis and electron microscopy were used to characterize the phage. Results: Clostridium phage Susfortuna has a double-stranded DNA genome of 19,046 bp with a G+C% content of 29.2, inverted terminal repeats and 28 predicted coding sequences (CDSs). Putative functions could not be assigned to most of the CDSs (64.3%). Transmission electron microscopy of phage Susfortuna revealed an isometric head and a short protruding tail stub resembling the structure of the Podoviridae family. A proteome analysis of phage Susfortuna identified seven structural proteins, but only one could be assigned with a putative function. Conclusions: Based on the morphology, the inverted terminal repeats and the small genome size, phage Susfortuna belongs to subfamily Picovirinae within the Podoviridae family in the order Caudovirales. Together with C. perfringens bacteriophage CPD7, phage Susfortuna represent a new genus of bacteriophages with very limited DNA sequence similarity to other known C. perfringens phages. Despite the limited DNA sequence similarity, the gene synteny among putative structural genes of phage Susfortuna is conserved among several C. perfringens bacteriophages belonging to the Podoviridae family indicating a common ancestor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA