Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0330823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38275838

RESUMO

The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.


Assuntos
Doenças Transmissíveis , Vesículas Extracelulares , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Galectina 1/metabolismo , Vesículas Extracelulares/metabolismo , Crescimento Neuronal , Glicoproteínas/metabolismo
2.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292914

RESUMO

During primary infection, varicella zoster virus (VZV) infects epithelial cells in the respiratory lymphoid organs and mucosa. Subsequent infection of lymphocytes, T cells in particular, causes primary viremia allowing systemic spread throughout the host, including the skin. This results in the expression of cytokines, including interferons (IFNs) which partly limit primary infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. How VZV infects lymphocytes from epithelial cells while evading the cytokine response has not been fully established. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity. Transcriptomic analysis revealed that gC in combination with IFN-γ increased the expression of a small subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), as well as several chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of epithelial cells resulted in lymphocyte function-associated antigen 1 (LFA-1)-dependent T cell adhesion. This gC activity required a stable interaction with IFN-γ and signalling through the IFN-γ receptor. Finally, the presence of gC during infection increased VZV spread from epithelial cells to peripheral blood mononuclear cells. This constitutes the discovery of a novel strategy to modulate the activity of IFN-γ, inducing the expression of a subset of ISGs, leading to enhanced T cell adhesion and virus spread.

3.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35852466

RESUMO

The innate and adaptive roles of γδ T cells and their clonal γδ T cell receptors (TCRs) in immune responses are still unclear. Recent studies of γδ TCR repertoire dynamics showed massive expansion of individual Vδ1+ γδ T cell clones during viral infection. To judge whether such expansion is random or actually represents TCR-dependent adaptive immune responses, information about their cognate TCR ligands is required. Here, we used CRISPR/Cas9-mediated screening to identify HLA-DRA, RFXAP, RFX5, and CIITA as required for target cell recognition of a CMV-induced Vγ3Vδ1+ TCR, and further characterization revealed a direct interaction of this Vδ1+ TCR with the MHC II complex HLA-DR. Since MHC II is strongly upregulated by interferon-γ, these results suggest an inflammation-induced MHC-dependent immune response of γδ T cells.


Assuntos
Infecções por Citomegalovirus , Linfócitos Intraepiteliais , Células Clonais , Antígenos HLA-DR , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...