Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; 5(2): 100271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38297831

RESUMO

It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.


Assuntos
Metilação de DNA , Impressão Genômica , Alelos , Metilação de DNA/genética , Impressão Genômica/genética , Regiões Promotoras Genéticas/genética , Animais , Camundongos
2.
Neurobiol Dis ; 192: 106431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331351

RESUMO

Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.


Assuntos
Microcefalia , Animais , Feminino , Humanos , Masculino , Camundongos , Imagem de Tensor de Difusão , Gotículas Lipídicas , Camundongos Knockout , Microcefalia/genética , Microcefalia/metabolismo , Neurônios/metabolismo
3.
Front Cell Dev Biol ; 10: 1022422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313557

RESUMO

Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.

4.
Eur J Nucl Med Mol Imaging ; 49(3): 796-808, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34313817

RESUMO

INTRODUCTION: A novel, red-shifted bioluminescence imaging (BLI) system called AkaBLI has been recently developed for cell tracking in preclinical models and to date, limited data is available on how it performs in relation to existing systems. PURPOSE: To systematically compare the performance of AkaBLI and the standard Firefly luciferase (FLuc) systems to monitor the biodistribution and fate of cell therapies in rodents. METHODS: Umbilical cord mesenchymal stromal cells (MSCs) were transduced to produce two genetically engineered populations, expressing either AkaLuc or the engineered FLuc luc2. The bioluminescence of AkaLuc+ and FLuc+ cells was assessed both in vitro (emission spectra, saturation kinetics and light emission per cell) and in vivo (substrate kinetics following intraperitoneal and subcutaneous administration and biodistribution of the cells up to day 7). RESULTS: Introduction of the reporter genes has no effect on MSC phenotype. For BLI, the FLuc system is superior to AkaBLI in terms of (i) light output, producing a stronger signal after subcutaneous substrate delivery and more consistent signal kinetics when delivered intraperitoneally; (ii) absence of hepatic background; and (iii) safety, where the AkaLuc substrate was associated with a reaction in the skin of the mice in vivo. CONCLUSION: We conclude that there is no advantage in using the AkaBLI system to track the biodistribution of systemically administered cell-based regenerative medicine therapies in vivo.


Assuntos
Luciferases de Vaga-Lume , Células-Tronco Mesenquimais , Animais , Genes Reporter , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Distribuição Tecidual
5.
Front Genet ; 12: 680537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220953

RESUMO

GNAS encodes the stimulatory G protein alpha-subunit (Gsα) and its large variant XLαs. Studies have suggested that XLαs is expressed exclusively paternally. Thus, XLαs deficiency is considered to be responsible for certain findings in patients with paternal GNAS mutations, such as pseudo-pseudohypoparathyroidism, and the phenotypes associated with maternal uniparental disomy of chromosome 20, which comprises GNAS. However, a study of bone marrow stromal cells (BMSC) suggested that XLαs could be biallelically expressed. Aberrant BMSC differentiation due to constitutively activating GNAS mutations affecting both Gsα and XLαs is the underlying pathology in fibrous dysplasia of bone. To investigate allelic XLαs expression, we employed next-generation sequencing and a polymorphism common to XLαs and Gsα, as well as A/B, another paternally expressed GNAS transcript. In mouse BMSCs, Gsα transcripts were 48.4 ± 0.3% paternal, while A/B was 99.8 ± 0.2% paternal. In contrast, XLαs expression varied among different samples, paternal contribution ranging from 43.0 to 99.9%. Sample-to-sample variation in paternal XLαs expression was also detected in bone (83.7-99.6%) and cerebellum (83.8 to 100%) but not in cultured calvarial osteoblasts (99.1 ± 0.1%). Osteoblastic differentiation of BMSCs shifted the paternal XLαs expression from 83.9 ± 1.5% at baseline to 97.2 ± 1.1%. In two human BMSC samples grown under osteoinductive conditions, XLαs expression was also predominantly monoallelic (91.3 or 99.6%). Thus, the maternal GNAS contributes significantly to XLαs expression in BMSCs but not osteoblasts. Altered XLαs activity may thus occur in certain cell types irrespective of the parental origin of a GNAS defect.

6.
Endocrinology ; 161(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758181

RESUMO

Fibroblast growth factor-23 (FGF23) is critical for phosphate and vitamin D homeostasis. Cellular and molecular mechanisms underlying FGF23 production remain poorly defined. The extra-large Gα subunit (XLαs) is a variant of the stimulatory G protein alpha-subunit (Gsα), which mediates the stimulatory action of parathyroid hormone in skeletal FGF23 production. XLαs ablation causes diminished FGF23 levels in early postnatal mice. Herein we found that plasma FGF23 levels were comparable in adult XLαs knockout (XLKO) and wild-type littermates. Upon adenine-rich diet-induced renal injury, a model of chronic kidney disease, both mice showed increased levels of plasma FGF23. Unexpectedly, XLKO mice had markedly higher FGF23 levels than WT mice, with higher blood urea nitrogen and more severe tubulopathy. FGF23 mRNA levels increased substantially in bone and bone marrow in both genotypes; however, the levels in bone were markedly higher than in bone marrow. In XLKO mice, a positive linear correlation was observed between plasma FGF23 and bone, but not bone marrow, FGF23 mRNA levels, suggesting that bone, rather than bone marrow, is an important contributor to severely elevated FGF23 levels in this model. Upon folic acid injection, a model of acute kidney injury, XLKO and WT mice exhibited similar degrees of tubulopathy; however, plasma phosphate and FGF23 elevations were modestly blunted in XLKO males, but not in females, compared to WT counterparts. Our findings suggest that XLαs ablation does not substantially alter FGF23 production in adult mice but increases susceptibility to adenine-induced kidney injury, causing severe FGF23 elevations in plasma and bone.


Assuntos
Injúria Renal Aguda/sangue , Fatores de Crescimento de Fibroblastos/sangue , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Insuficiência Renal Crônica/sangue , Injúria Renal Aguda/etiologia , Adenina/administração & dosagem , Adenina/toxicidade , Animais , Nitrogênio da Ureia Sanguínea , Osso e Ossos/metabolismo , Dieta , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Ácido Fólico/toxicidade , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Masculino , Camundongos Knockout , Insuficiência Renal Crônica/etiologia , Fatores Sexuais , Complexo Vitamínico B/toxicidade
7.
Hum Mol Genet ; 28(23): 3928-3939, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600782

RESUMO

Alkaptonuria is an inherited disease caused by homogentisate 1,2-dioxygenase (HGD) deficiency. Circulating homogentisic acid (HGA) is elevated and deposits in connective tissues as ochronotic pigment. In this study, we aimed to define developmental and adult HGD tissue expression and determine the location and amount of gene activity required to lower circulating HGA and rescue the alkaptonuria phenotype. We generated an alkaptonuria mouse model using a knockout-first design for the disruption of the HGD gene. Hgd tm1a -/- mice showed elevated HGA and ochronosis in adulthood. LacZ staining driven by the endogenous HGD promoter was localised to only liver parenchymal cells and kidney proximal tubules in adulthood, commencing at E12.5 and E15.5 respectively. Following removal of the gene trap cassette to obtain a normal mouse with a floxed 6th HGD exon, a double transgenic was then created with Mx1-Cre which conditionally deleted HGD in liver in a dose dependent manner. 20% of HGD mRNA remaining in liver did not rescue the disease, suggesting that we need more than 20% of liver HGD to correct the disease in gene therapy. Kidney HGD activity which remained intact reduced urinary HGA, most likely by increased absorption, but did not reduce plasma HGA nor did it prevent ochronosis. In addition, downstream metabolites of exogenous 13C6-HGA, were detected in heterozygous plasma, revealing that hepatocytes take up and metabolise HGA. This novel alkaptonuria mouse model demonstrated the importance of targeting liver for therapeutic intervention, supported by our observation that hepatocytes take up and metabolise HGA.


Assuntos
Alcaptonúria/enzimologia , Homogentisato 1,2-Dioxigenase/genética , Ácido Homogentísico/metabolismo , Fígado/enzimologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Homogentisato 1,2-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas
8.
JCI Insight ; 4(17)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31484825

RESUMO

Dysregulated actions of bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) result in several inherited diseases, such as X-linked hypophosphatemia (XLH), and contribute substantially to the mortality in kidney failure. Mechanisms governing FGF23 production are poorly defined. We herein found that ablation of the Gq/11α-like, extralarge Gα subunit (XLαs), a product of GNAS, exhibits FGF23 deficiency and hyperphosphatemia in early postnatal mice (XLKO). FGF23 elevation in response to parathyroid hormone, a stimulator of FGF23 production via cAMP, was intact in XLKO mice, while skeletal levels of protein kinase C isoforms α and δ (PKCα and PKCδ) were diminished. XLαs ablation in osteocyte-like Ocy454 cells suppressed the levels of FGF23 mRNA, inositol 1,4,5-trisphosphate (IP3), and PKCα/PKCδ proteins. PKC activation in vivo via injecting phorbol myristate acetate (PMA) or by constitutively active Gqα-Q209L in osteocytes and osteoblasts promoted FGF23 production. Molecular studies showed that the PKC activation-induced FGF23 elevation was dependent on MAPK signaling. The baseline PKC activity was elevated in bones of Hyp mice, a model of XLH. XLαs ablation significantly, but modestly, reduced serum FGF23 and elevated serum phosphate in Hyp mice. These findings reveal a potentially hitherto-unknown mechanism of FGF23 synthesis involving a G protein-coupled IP3/PKC pathway, which may be targeted to fine-tune FGF23 levels.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteína Quinase C/metabolismo , Animais , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/patologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Predisposição Genética para Doença/genética , Humanos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos , Hormônio Paratireóideo/metabolismo , Proteínas Quinases , RNA Mensageiro/metabolismo , Proteínas Recombinantes
9.
Elife ; 72018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29949503

RESUMO

Understanding the fate of exogenous cells after implantation is important for clinical applications. Preclinical studies allow imaging of cell location and survival. Labelling with nanoparticles enables high sensitivity detection, but cell division and cell death cause signal dilution and false positives. By contrast, genetic reporter signals are amplified by cell division. Here, we characterise lentivirus-based bi-cistronic reporter gene vectors and silica-coated gold nanorods (GNRs) as synergistic tools for cell labelling and tracking. Co-expression of the bioluminescence reporter luciferase and the optoacoustic reporter near-infrared fluorescent protein iRFP720 enabled cell tracking over time in mice. Multispectral optoacoustic tomography (MSOT) showed immediate biodistribution of GNR-labelled cells after intracardiac injection and successive clearance of GNRs (day 1-15) with high resolution, while optoacoustic iRFP720 detection indicated tumour growth (day 10-40). This multimodal cell tracking approach could be applied widely for cancer and regenerative medicine research to monitor short- and long-term biodistribution, tumour formation and metastasis.


Assuntos
Rastreamento de Células/métodos , Nanopartículas/administração & dosagem , Nanotubos/química , Neoplasias/patologia , Animais , Genes Reporter/genética , Ouro/química , Humanos , Lentivirus/genética , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico , Medicina Regenerativa/tendências
10.
Biol Open ; 7(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666052

RESUMO

Mesodermal populations can be generated in vitro from mouse embryonic stem cells (mESCs) using three-dimensional (3-D) aggregates called embryoid bodies or two-dimensional (2-D) monolayer culture systems. Here, we investigated whether Brachyury-expressing mesodermal cells generated using 3-D or 2-D culture systems are equivalent or, instead, have different properties. Using a Brachyury-GFP/E2-Crimson reporter mESC line, we isolated Brachyury-GFP + mesoderm cells using flow-activated cell sorting and compared their gene expression profiles and ex vivo differentiation patterns. Quantitative real-time polymerase chain reaction analysis showed significant up-regulation of Cdx2, Foxf1 and Hoxb1 in the Brachyury-GFP+ cells isolated from the 3-D system compared with those isolated from the 2-D system. Furthermore, using an ex vivo mouse kidney rudiment assay, we found that, irrespective of their source, Brachyury-GFP+ cells failed to integrate into developing nephrons, which are derived from the intermediate mesoderm. However, Brachyury-GFP+ cells isolated under 3-D conditions appeared to differentiate into endothelial-like cells within the kidney rudiments, whereas the Brachyury-GFP+ isolated from the 2-D conditions only did so to a limited degree. The high expression of Foxf1 in the 3-D Brachyury-GFP+ cells combined with their tendency to differentiate into endothelial-like cells suggests that these mesodermal cells may represent lateral plate mesoderm.

11.
Stem Cell Reports ; 10(3): 766-779, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29429961

RESUMO

Human pluripotent stem cells (hPSCs) hold great promise for understanding kidney development and disease. We reproducibly differentiated three genetically distinct wild-type hPSC lines to kidney precursors that underwent rudimentary morphogenesis in vitro. They expressed nephron and collecting duct lineage marker genes, several of which are mutated in human kidney disease. Lentiviral-transduced hPSCs expressing reporter genes differentiated similarly to controls in vitro. Kidney progenitors were subcutaneously implanted into immunodeficient mice. By 12 weeks, they formed organ-like masses detectable by bioluminescence imaging. Implants included perfused glomeruli containing human capillaries, podocytes with regions of mature basement membrane, and mesangial cells. After intravenous injection of fluorescent low-molecular-weight dextran, signal was detected in tubules, demonstrating uptake from glomerular filtrate. Thus, we have developed methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo. These advances beyond in vitro culture are critical steps toward using hPSCs to model and treat kidney diseases.


Assuntos
Rim/citologia , Néfrons/citologia , Células-Tronco Pluripotentes/citologia , Animais , Membrana Basal/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Humanos , Células Mesangiais/citologia , Camundongos , Camundongos SCID , Organogênese/fisiologia , Podócitos/citologia
12.
Contrast Media Mol Imaging ; 2018: 2514796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627058

RESUMO

The ability to track the biodistribution and fate of multiple cell populations administered to rodents has the potential to facilitate the understanding of biological processes in a range of fields including regenerative medicine, oncology, and host/pathogen interactions. Bioluminescence imaging is an important tool for achieving this goal, but current protocols rely on systems that have poor sensitivity or require spectral decomposition. Here, we show that a bioluminescence resonance energy transfer reporter (BRET) based on NanoLuc and LSSmOrange in combination with firefly luciferase enables the unambiguous discrimination of two cell populations in vivo with high sensitivity. We insert each of these reporter genes into cells using lentiviral vectors and demonstrate the ability to monitor the cells' biodistribution under a wide range of administration conditions, including the venous or arterial route, and in different tissues including the brain, liver, kidneys, and tumours. Our protocol allows for the imaging of two cell populations in the same imaging session, facilitating the overlay of the signals and the identification of anatomical positions where they colocalise. Finally, we provide a method for postmortem confirmation of the presence of each cell population in excised organs.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Medições Luminescentes/métodos , Imagem Óptica/métodos , Animais , Linhagem Celular , Genes Reporter , Vetores Genéticos , Luciferases de Vaga-Lume , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Distribuição Tecidual
13.
Int J Mol Sci ; 19(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271879

RESUMO

Far-red fluorescent reporter genes can be used for tracking cells non-invasively in vivo using fluorescence imaging. Here, we investigate the effectiveness of the far-red fluorescent protein, E2-Crimson (E2C), for tracking mouse embryonic cells (mESCs) in vivo following subcutaneous administration into mice. Using a knock-in strategy, we introduced E2C into the Rosa26 locus of an E14-Bra-GFP mESC line, and after confirming that the E2C had no obvious effect on the phenotype of the mESCs, we injected them into mice and imaged them over nine days. The results showed that fluorescence intensity was weak, and cells could only be detected when injected at high densities. Furthermore, intensity peaked on day 4 and then started to decrease, despite the fact that tumour volume continued to increase beyond day 4. Histopathological analysis showed that although E2C fluorescence could barely be detected in vivo at day 9, analysis of frozen sections indicated that all mESCs within the tumours continued to express E2C. We hypothesise that the decrease in fluorescence intensity in vivo was probably due to the fact that the mESC tumours became more vascular with time, thus leading to increased absorbance of E2C fluorescence by haemoglobin. We conclude that the E2C reporter has limited use for tracking cells in vivo, at least when introduced as a single copy into the Rosa26 locus.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , Células-Tronco Embrionárias Murinas/citologia , Imagem Óptica/métodos , Animais , Feminino , Corantes Fluorescentes/metabolismo , Técnicas de Introdução de Genes , Proteínas Luminescentes/genética , Camundongos , Camundongos SCID , Neoplasias/diagnóstico , Transgenes , Proteína Vermelha Fluorescente
14.
Proc Natl Acad Sci U S A ; 114(45): E9559-E9568, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078380

RESUMO

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Ferro/metabolismo , Animais , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular , Células HEK293 , Coração/fisiologia , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Osteócitos/metabolismo , Proteômica/métodos , Receptores de Vasopressinas/metabolismo , Nexinas de Classificação/metabolismo , Transferrina/metabolismo
15.
Mol Brain ; 9: 39, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27080240

RESUMO

BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while ß-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections.


Assuntos
Células Ependimogliais/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/metabolismo , Neuroglia/metabolismo , Magreza/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Contagem de Células , Cromograninas , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Camundongos , Nestina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo
16.
Sci Signal ; 8(391): ra84, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26307011

RESUMO

GNAS, which encodes the stimulatory G protein (heterotrimeric guanine nucleotide-binding protein) α subunit (Gαs), also encodes a large variant of Gαs termed extra-large α subunit (XLαs), and alterations in XLαs abundance or activity are implicated in various human disorders. Although XLαs, like Gαs, stimulates generation of the second messenger cyclic adenosine monophosphate (cAMP), evidence suggests that XLαs and Gαs have opposing effects in vivo. We investigated the role of XLαs in mediating signaling by parathyroid hormone (PTH), which activates a G protein-coupled receptor (GPCR) that stimulates both Gαs and Gαq/11 in renal proximal tubules to maintain phosphate and vitamin D homeostasis. At postnatal day 2 (P2), XLαs knockout (XLKO) mice exhibited hyperphosphatemia, hypocalcemia, and increased serum concentrations of PTH and 1,25-dihydroxyvitamin D. The ability of PTH to reduce serum phosphate concentrations was impaired, and the abundance of the sodium phosphate cotransporter Npt2a in renal brush border membranes was reduced in XLKO mice, whereas PTH-induced cAMP excretion in the urine was modestly increased. Basal and PTH-stimulated production of inositol 1,4,5-trisphosphate (IP3), which is the second messenger produced by Gαq/11 signaling, was repressed in renal proximal tubules from XLKO mice. Crossing of XLKO mice with mice overexpressing XLαs specifically in renal proximal tubules rescued the phenotype of the XLKO mice. Overexpression of XLαs in HEK 293 cells enhanced IP3 generation in unstimulated cells and in cells stimulated with PTH or thrombin, which acts through a Gq/11-coupled receptor. Together, our findings suggest that XLαs enhances Gq/11 signaling to mediate the renal actions of PTH during early postnatal development.


Assuntos
AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Túbulos Renais Proximais/metabolismo , Hormônio Paratireóideo/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Cromograninas , AMP Cíclico/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Inositol 1,4,5-Trifosfato/genética , Túbulos Renais Proximais/citologia , Camundongos , Camundongos Knockout , Hormônio Paratireóideo/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
17.
PLoS One ; 8(6): e65639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23822972

RESUMO

Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2∶2 or 1∶1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Dosagem de Genes , Impressão Genômica , Família Multigênica , Absorciometria de Fóton , Animais , Animais Recém-Nascidos , Transtornos do Crescimento , Camundongos
18.
Exp Physiol ; 98(10): 1432-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23748904

RESUMO

Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl-deficient mice have a lean and hypermetabolic phenotype, with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS-related phenotypes, we have now investigated the cardiovascular system. The Gnasxl KO mice were ∼20 mmHg hypertensive in comparison to wild-type (WT) littermates (P ≤ 0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate in conscious KOs (630 ± 10 versus 584 ± 12 beats min(-1), KO versus WT, P ≤ 0.05). Body temperature was also elevated (38.1 ± 0.3 versus 36.9 ± 0.4°C, KO versus WT, P ≤ 0.05). To investigate autonomic nervous system influences, we used heart rate variability analyses. We empirically defined frequency power bands using atropine and reserpine and verified high-frequency (HF) power and low-frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. The LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. In contrast, atropine and exendin-4, a centrally acting agonist of the glucagon-like peptide-1 receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a greater increase in heart rate in KOs. Mild stress had a blunted effect on the LF/HF ratio in KOs consistent with elevated basal sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues.


Assuntos
Pressão Sanguínea/fisiologia , Temperatura Corporal , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Frequência Cardíaca/fisiologia , Animais , Atropina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Cromograninas , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Glucagon/metabolismo , Reserpina/farmacologia , Estresse Psicológico , Peçonhas/farmacologia
19.
Front Genet ; 3: 264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226156

RESUMO

Non-coding RNAs (ncRNAs) have long been recognized at imprinted gene loci and provided early paradigms to investigate their functions and molecular mechanisms of action. The characteristic feature of imprinted genes, their monoallelic, parental-origin-dependent expression, is achieved through complex epigenetic regulation, which is modulated by ncRNAs. This minireview focuses on two imprinted gene clusters, in which changes in ncRNA expression contribute to human disorders. At the GNAS locus loss of NESP RNA can cause autosomal dominant Pseudohypoparathyroidism type 1b (AD-PHP-Ib), while at the SNRPN-UBE3A locus a long ncRNA and processed snoRNAs play a role in Angelman-Syndrome (AS) and Prader-Willi-Syndrome (PWS). The ncRNAs silence overlapping protein-coding transcripts in sense or anti-sense orientation through changes in histone modifications as well as DNA methylation at CpG-rich sequence motifs. Their epigenetic modulatory functions are required in early development in the pre-implantation embryo or already in the parental germ cells. However, it remains unclear whether the sequence homology-carrying ncRNA itself is required, or whether the process of its transcription through other promoters causes the silencing effect.

20.
Proc Natl Acad Sci U S A ; 109(17): 6638-43, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22496590

RESUMO

Maternal deletion of the NESP55 differentially methylated region (DMR) (delNESP55/ASdel3-4(m), delNAS(m)) from the GNAS locus in humans causes autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib(delNASm)), a disorder of proximal tubular parathyroid hormone (PTH) resistance associated with loss of maternal GNAS methylation imprints. Mice carrying a similar, maternally inherited deletion of the Nesp55 DMR (ΔNesp55(m)) replicate these Gnas epigenetic abnormalities and show evidence for PTH resistance, yet these mice demonstrate 100% mortality during the early postnatal period. We investigated whether the loss of extralarge αs (XLαs) imprinting and the resultant biallelic expression of XLαs are responsible for the early postnatal lethality in ΔNesp55(m) mice. First, we found that ΔNesp55(m) mice are hypoglycemic and have reduced stomach-to-body weight ratio. We then generated mice having the same epigenetic abnormalities as the ΔNesp55(m) mice but with normalized XLαs expression due to the paternal disruption of the exon giving rise to this Gnas product. These mice (ΔNesp55(m)/Gnasxl(m+/p-)) showed nearly 100% survival up to postnatal day 10, and a substantial number of them lived to adulthood. The hypoglycemia and reduced stomach-to-body weight ratio observed in 2-d-old ΔNesp55(m) mice were rescued in the ΔNesp55(m)/Gnasxl(m+/p-) mice. Surviving double-mutant animals had significantly reduced Gαs mRNA levels and showed hypocalcemia, hyperphosphatemia, and elevated PTH levels, thus providing a viable model of human AD-PHP-Ib. Our findings show that the hypoglycemia and early postnatal lethality caused by the maternal deletion of the Nesp55 DMR result from biallelic XLαs expression. The double-mutant mice will help elucidate the pathophysiological mechanisms underlying AD-PHP-Ib.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Genes Letais , Impressão Genômica , Hipoglicemia/genética , Pseudo-Hipoparatireoidismo/genética , Animais , Peso Corporal , Cromograninas , Hipoglicemia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Pseudo-Hipoparatireoidismo/complicações , Estômago/patologia , Pseudo-Hipoparatireoidismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...