Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 49436-49446, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37821424

RESUMO

Near-infrared (NIR) narrowband organic photodetectors (OPDs) can be essential building blocks for emerging applications including wireless optical communication and light detection, but further improvement of their performances remains to be a great challenge. Herein, a light manipulation strategy combining solution-processable gold nanorings (AuNRs)-based hole transporting layer (HTL) and an optical microcavity is proposed to achieve high-performance NIR narrowband OPDs. Optical microcavities with a Fabry-Pérot resonator structure, guided by theoretical simulation, are coupled with PM6:BTP-eC9-based OPDs to exhibit highly tunable NIR selectivity. The further integration of AuNRs array with NIR-customized localized surface plasmon resonance in the HTL of the NIR narrowband OPDs enables evident NIR absorption enhancement, yielding a specific detectivity exceeding 1013 Jones (1.5 × 1012 Jones, calculated from noise spectral density) at 820 nm, along with a finely selective photoresponse (full width at half-maximum of 80 nm) and a 3-fold increase in photocurrent intensity. Finally, the practical application of our OPDs is demonstrated in an NIR communication system. These results reveal the great potential of an appropriate optical design for developing highly performing NIR narrowband OPDs.

2.
Opt Lett ; 48(15): 4157-4160, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527142

RESUMO

We report on a novel, to the best of our knowledge, active probe for scanning near-field optical microscopy (SNOM). A fluorescent nanosphere, acting as the secondary source, is grafted in an electrostatic manner at the apex of a polymer tip integrated into the extremity of an optical fiber. Thanks to the high photostability and sensitivity of the secondary source, the near-field interaction with a gold nanocube is investigated. It is shown that the spatial resolution is well defined by the size of the fluorescent nanosphere. The polarization-dependent near-field images, which are consistent with the simulation, are ascribed to the local excitation rate enhancement. Meanwhile, measurement of the distance-dependent fluorescence lifetime of the nanosphere provides strong evidence that the local density of states is modified so that extra information on nano-emitters can be extracted during near-field scanning. This advanced active probe can thus potentially broaden the range of applications to include nanoscale thermal imaging, biochemical sensors, and the manipulation of nanoparticles.

3.
Opt Express ; 29(10): 14799-14814, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985194

RESUMO

A single metallic nanodisk is the simplest plasmonic nanostructure, but it is robust enough to generate a Fano resonance in the forward and backward scattering spectra by the increment of nanodisk height in the symmetric and asymmetric dielectric environment. Thanks to the phase retardation effect, the non-uniform distribution of electric field along the height of aluminum (Al) nanodisk generates the out-of-plane higher-order modes, which interfere with the dipolar mode and subsequently result in the Fano-lineshape scattering spectra. Meanwhile, the symmetry-breaking effect by the dielectric substrate and the increment of refractive index of the symmetric dielectric environment further accelerate the phase retardation effect and contribute to the appearance of out-of-plane modes. The experimental results on the periodic Al nanodisk arrays with different heights confirm the retardation-induced higher modes in the asymmetric and symmetric environment. The appearance of higher modes and blueshifted main dips in the transmission spectra prove the dominant role of out-of-plane higher modes on the plasmonic resonances of the taller Al nanodisk.

4.
ACS Appl Mater Interfaces ; 13(8): 10313-10320, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599478

RESUMO

Temperature characterization and quantification at the nanoscale remain core challenges in applications based on photoinduced heating of nanoparticles. Here, we propose a new approach to obtain quantitative temperature measurements on individual nanoparticles by combining modulated photothermal stimulation and heterodyne digital holography. From full-field reconstructed holograms, the temperature is determined with a precision of 0.3 K via a simple approach without requiring any calibration or fitting parameters. As an application, the dependence of temperature on the aspect ratio of gold nanoparticles is investigated. A good agreement with numerical simulation is observed.

5.
Nanoscale ; 13(3): 1915-1926, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33439182

RESUMO

The surface topography is known to play an important role on the near- and far-field optical properties of metallic nanoparticles. In particular, aluminum (Al) nanoparticles are commonly fabricated through evaporation techniques, therefore exhibiting elevated surface roughness additionally to their native oxide layer. In this study, the mode-dependent influence of surface roughness on the plasmonic properties sustained by Al nanodisks (NDs) is first numerically investigated using a realistic model taking into account the thin native oxide layer. Due to the symmetry-breaking induced by the supporting dielectric substrate to Al ND, it appears that the roughness affects differently the substrate-induced out-of-plane quadrupolar mode (below 300 nm) and the in-plane dipolar mode sustained by the Al ND. By increasing the top surface roughness of the Al ND, the substrate-induced quadrupolar mode is significantly damped especially in the ultraviolet regime, while the dipolar resonance is broadened and redshifted. The explanation of these effects relies in the decoherence and dissipation of the collective electronic oscillations as a result of the top surface roughness to the different near-field distribution of the out-of-plane quadrupolar mode and in-plane dipolar mode. Moreover, the influences of the diameter of Al ND, dielectric substrate with different refractive index, and the oxidation of Al ND on these two modes are also investigated. Particularly, the quadrupolar mode disappears with surface roughness and oxidation, explaining why this mode is very weak and sometimes barely visible on evaporated Al nanostructures reported in the literature. Finally, these results are experimentally confirmed by characterizing the optical properties of periodic Al ND arrays.

6.
Nanoscale ; 12(45): 23173-23182, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33200755

RESUMO

To mimic the optical influence of disorder in condensed matter, the effect of uniform disorder on plasmonic resonances were investigated numerically and experimentally on aluminum (Al) nanoparticle arrays. Resorting to the analogue of a plasmonic periodic array to a crystal on the sharp optical spectrum and its anisotropy, the disorder in the transition from crystal to glass (with broadened spectrum and isotropy) is imitated by three kinds of Al plasmonic metasurfaces: varying the displacement, size and rotation of each Al nanoparticle in the periodic array. The random variation on the location or size of each Al nanodisk in the plasmonic crystal induces broadening and reduction of their plasmonic resonances without significantly shifting its wavelength. Moreover, by rotating each Al nanorod in the plasmonic crystal by a random angle, the polarization dependence of plasmonic resonances is progressively decreased by increasing the rotation disorder. Thanks to these three kinds of Al metasurfaces, an enlightened understanding of the random physics in the solid state and the influence of manufacturing deviation in nanophotonics is supported.

7.
Opt Express ; 28(18): 25989-25997, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906876

RESUMO

Plasmonic color using metallic nanostructures has attracted considerable interest because of its subwavelength resolution and long sustainability. Significant efforts have been devoted to expanding the gamut of plasmonic color generation by tuning the composition, shape, and components in the primary pixel. In this study, we develop a novel and straightforward strategy for aluminum plasmonic color printing aimed at practical commercial applications. An array of aluminum nanodisks is designed for the broadband scattering of white pixels instead of the three primary colors. Examples presented include trademark and QR codes, which are common in the market of consumer advertising and item identification, that are encoded and fabricated in experiments with aluminum white color pixels to demonstrate feasibility. This simple and efficient strategy is compatible with cost-effective industrial fabrication methods, such as photolithography and nanoimprinting, and requires relatively simpler manufacturing procedures. Therefore, a new path is opened for the future with the extensive use of plasmonic color printing.

8.
Nat Commun ; 11(1): 3414, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641727

RESUMO

Hybrid plasmonic nano-emitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challenge. Here, we report on the optimal overlap of antenna's near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Au nanoparticles of various geometries are considered. The response of these hybrid nano-emitters is shown to be highly sensitive to the light polarization. Different light emission states are evidenced by photoluminescence measurements. These states correspond to polarization-sensitive nanoscale overlap between the exciting local field and the active medium distribution. The decrease of the QD concentration within the monomer formulation allows trapping of a single quantum dot in the vicinity of the Au particle. The latter objects show polarization-dependent switching in the single-photon regime.

9.
Nano Lett ; 20(1): 509-516, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816242

RESUMO

When circularly polarized light interacts with a nanostructure, the optical response depends on the geometry of the structure. If the nanostructure is chiral (i.e., it cannot be superimposed on its mirror image), then its optical response, both in near-field and far-field, depends on the handedness of the incident light. In contrast, achiral structures exhibit identical far-field responses for left- and right-circular polarization. Here, we show that a perfectly achiral nanostructure, a plasmonic metamolecule with trigonal D3h symmetry, exhibits a near-field response that is sensitive to the handedness of light. This effect stems from the near-field interference between the different plasmonic modes sustained by the plasmonic metamolecule under circularly polarized light excitation. The local chirality in a plasmonic trimer is then experimentally evidenced with nanoscale resolution using a molecular probe. Our experiments demonstrate that the optical near-field chirality can be imprinted into the photosensitive polymer, turning an optical chirality into a geometrical chirality that can be imaged using atomic force microscopy. These results are of interest for the field of polarization-sensitive photochemistry.

10.
ACS Nano ; 13(4): 4199-4208, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30883108

RESUMO

High index dielectric nanoparticles have been proposed for many different applications. However, widespread utilization in practice also requires large-scale production methods for crystalline silicon nanoparticles, with engineered optical properties in a low-cost manner. Here, we demonstrate a facile, low-cost, and large-scale fabrication method of crystalline silicon colloidal Mie resonators in water, using a blender. The obtained nanoparticles are polydisperse with an almost spherical shape and the diameters controlled in the range 100-200 nm by a centrifugation process. Then the size distribution of silicon nanoparticles enables broad extinction from UV to near-infrared, confirmed by Mie theory when considering the size distribution in the calculations. Thanks to photolithographic and drop-cast deposition techniques to locate the position on a substrate of the colloidal nanoparticles, we experimentally demonstrate that the individual silicon nanoresonators show strong electric and magnetic Mie resonances in the visible range.

11.
ACS Sens ; 4(3): 586-594, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30735031

RESUMO

Thanks to their small sensing volume, nanosensors based on localized surface plasmon resonances (LSPR) allow the detection of minute amounts of analytes, down to the single-molecule limit. However, the detected analytes are often large molecules, such as proteins. The detection of small molecules remains largely unexplored. Here, we use a hybrid photonic-plasmonic nanosensor to detect a small target molecule (pyridine). The sensor's design is based on a dielectric photonic microstructure acting as an antenna, which efficiently funnels light toward a plasmonic transducer and enhances the detection efficiency. This sensor exhibits a limit of detection as small as 10-14 mol L-1. Using a calibration procedure based on electrodynamical numerical simulations, we compute the number of detected molecules. This yields a limit of detection in mass of 4 zeptograms (1 zg = 10-21 g), a record value for plasmonic molecular sensors. Our system can hence be seen as an optical molecular weighing scale, enabling room temperature detection of mass at the zeptogram scale.


Assuntos
Limite de Detecção , Nanotecnologia/instrumentação , Fótons , Piridinas/análise , Ressonância de Plasmônio de Superfície/instrumentação
12.
Langmuir ; 34(51): 15763-15772, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30481036

RESUMO

We show femtosecond direct laser-induced assembly of gold nanostructures with plasmon resonance band variable as a function of laser irradiation in a wide range of visible wavelengths. A system of 2-photon lithography is used to achieve site-selectively controlled dewetting of a thin gold film into nanostructures in which size and shape are highly dependent on the laser power. Simultaneous measurements of localized surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) in the presence of various concentrations of trans-1,2-bis(4-pyridyl) ethylene (BPE) as target molecule are performed in order to highlight the relationship between structural dimensions, plasmonic effect, and detection activity. The resulting gold NPs exhibit high sensitivity as both LSPR and SERS sensors and allow the detection of picomolar concentrations of BPE with a SERS enhancement factor (SEF) of 1.33 × 109 and a linear detection range between 10-3 and 10-12 M.

13.
Sci Rep ; 6: 38647, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934890

RESUMO

Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired.

14.
Nano Lett ; 15(11): 7458-66, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26437118

RESUMO

We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

15.
Sci Rep ; 5: 14419, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26399425

RESUMO

Metal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range.

16.
Nano Lett ; 14(10): 5517-23, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207386

RESUMO

We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics.

17.
Nanotechnology ; 25(22): 225603, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24830364

RESUMO

We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.


Assuntos
Coloide de Ouro/síntese química , Nanopartículas Metálicas , Metacrilatos/química , Poliestirenos/química , Nanopartículas Metálicas/ultraestrutura
18.
Sci Rep ; 3: 2672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24037020

RESUMO

Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells.

19.
Opt Express ; 21(1): 30-8, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388893

RESUMO

In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.

20.
J Phys Chem Lett ; 4(3): 496-501, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281746

RESUMO

Sensitivity is a key factor in the improvement of nanoparticle-based biosensors. Bowtie nanoantennae have shown high sensitivity for both surface-enhanced Raman scattering (SERS)- and localized surface plasmon resonance (LSPR)-based biosensing. In this work, optical bowtie nanoantennae with varying geometries were simulated, fabricated, and characterized. We successfully fabricated sub-5 nm gaps between prisms. The gap between prisms, the prism size, and the radius of curvature of the prism corners were characterized for their effects on the optical and electromagnetic properties. Bowties were characterized using LSPR, SERS, and photochemical near-field imaging. The results indicate that the radius of curvature of the prism corners has an important effect on the SERS abilities of a nanoparticle array. The trends described herein can be utilized to intelligently design highly sensitive SERS and LSPR biosensing substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...