Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eukaryot Cell ; 14(12): 1253-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453652

RESUMO

Using confocal microscopy, we observed ring-like organelles, similar in size to nuclei, in the hyphal tip of the filamentous fungus Neurospora crassa. These organelles contained a subset of vacuolar proteins. We hypothesize that they are novel prevacuolar compartments (PVCs). We examined the locations of several vacuolar enzymes and of fluorescent compounds that target the vacuole. Vacuolar membrane proteins, such as the vacuolar ATPase (VMA-1) and the polyphosphate polymerase (VTC-4), were observed in the PVCs. A pigment produced by adenine auxotrophs, used to visualize vacuoles, also accumulated in PVCs. Soluble enzymes of the vacuolar lumen, alkaline phosphatase and carboxypeptidase Y, were not observed in PVCs. The fluorescent molecule Oregon Green 488 carboxylic acid diacetate, succinimidyl ester (carboxy-DFFDA) accumulated in vacuoles and in a subset of PVCs, suggesting maturation of PVCs from the tip to distal regions. Three of the nine Rab GTPases in N. crassa, RAB-2, RAB-4, and RAB-7, localized to the PVCs. RAB-2 and RAB-4, which have similar amino acid sequences, are present in filamentous fungi but not in yeasts, and no function has previously been reported for these Rab GTPases in fungi. PVCs are highly pleomorphic, producing tubular projections that subsequently become detached. Dynein and dynactin formed globular clusters enclosed inside the lumen of PVCs. The size, structure, dynamic behavior, and protein composition of the PVCs appear to be significantly different from those of the well-studied prevacuolar compartment of yeasts.


Assuntos
Compartimento Celular , Neurospora crassa/metabolismo , Vacúolos/metabolismo , Adenina/farmacologia , Adenosina Trifosfatases/metabolismo , Compartimento Celular/efeitos dos fármacos , Complexo Dinactina , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/efeitos dos fármacos , Hifas/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Neurospora crassa/efeitos dos fármacos , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Pigmentos Biológicos/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Vacúolos/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo
2.
Fungal Genet Biol ; 82: 213-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26231681

RESUMO

LIS1 is a microtubule (Mt) plus-end binding protein that interacts with the dynein/dynactin complex. In humans, LIS1 is required for proper nuclear and organelle migration during cell growth. Although gene duplication is absent from Neurospora crassa, we found two paralogues of human LIS1. We named them LIS1-1 and LIS1-2 and studied their dynamics and function by fluorescent tagging. At the protein level, LIS1-1 and LIS1-2 were very similar. Although, the characteristic coiled-coil motif was not present in LIS1-2. LIS1-1-GFP and LIS1-2-GFP showed the same cellular distribution and dynamics, but LIS1-2-GFP was less abundant. Both LIS1 proteins were found in the subapical region as single fluorescent particles traveling toward the cell apex, they accumulated in the apical dome forming prominent short filament-like structures, some of which traversed the Spitzenkörper (Spk). The fluorescent structures moved exclusively in anterograde fashion along straight paths suggesting they traveled on Mts. There was no effect in the filament behavior of LIS1-1-GFP in the Δlis1-2 mutant but the dynamics of LIS1-2-GFP was affected in the Δlis1-1 mutant. Microtubular integrity and the dynein-dynactin complex were necessary for the formation of filament-like structures of LIS1-1-GFP in the subapical and apical regions; however, conventional kinesin (KIN-1) was not. Deletion mutants showed that the lack of lis1-1 decreased cell growth by ∼75%; however, the lack of lis1-2 had no effect on growth. A Δlis1-1;Δlis1-2 double mutant showed slower growth than either single mutant. Conidia production was reduced but branching rate increased in Δlis1-1 and the Δlis1-1;Δlis1-2 double mutants. The absence of LIS1-1 had a strong effect on Mt organization and dynamics and indirectly affected nuclear and mitochondrial distribution. The absence of LIS1-1 filaments in dynein mutants (ropy mutants) or in benomyl treated hyphae indicates the strong association between this protein and the regulation of the dynein-dynactin complex and Mt organization. LIS1-1 and LIS1-2 had a high amino acid homology, nevertheless, the absence of the coiled-coil motif in LIS1-2 suggests that its function or regulation may be distinct from that of LIS1-1.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Proteínas Fúngicas/genética , Proteínas Associadas aos Microtúbulos/genética , Neurospora crassa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Complexo Dinactina , Dineínas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Neurospora crassa/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão , Alinhamento de Sequência
3.
Cytoskeleton (Hoboken) ; 69(9): 613-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22991199

RESUMO

Cytoplasmic dynein is responsible for the transport and delivery of cargoes in organisms ranging from humans to fungi. Dysfunction of dynein motor machinery due to mutations in dynein or its activating complex dynactin can result in one of several neurological diseases in mammals. The mouse Legs at odd angles (Loa) mutation in the tail domain of the dynein heavy chain has been shown to lead to progressive neurodegeneration in mice. The mechanism by which the Loa mutation affects dynein function is just beginning to be understood. In this work, we generated the dynein tail mutation observed in Loa mice into the Neurospora crassa genome and utilized cell biological and complementing biochemical approaches to characterize how that tail mutation affected dynein function. We determined that the Loa mutation exhibits several subtle defects upon dynein function in N. crassa that were not seen in mice, including alterations in dynein localization, impaired velocity of vesicle transport, and in the biochemical properties of purified motors. Our work provides new information on the role of the tail domain on dynein function and points out areas of future research that will be of interest to pursue in mammalian systems.


Assuntos
Dineínas/genética , Dineínas/metabolismo , Neurospora crassa/metabolismo , Animais , Camundongos , Microtúbulos/metabolismo , Mutação , Neurospora crassa/genética
4.
Genetics ; 191(4): 1157-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22649085

RESUMO

Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies.


Assuntos
Dineínas/genética , Dineínas/metabolismo , Mutação , Domínios e Motivos de Interação entre Proteínas , Adenosina Trifosfatases/metabolismo , Núcleo Celular/metabolismo , Complexo Dinactina , Dineínas/química , Hifas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Moleculares , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fenótipo , Ligação Proteica , Conformação Proteica , Transporte Proteico , Vesículas Transportadoras/metabolismo
5.
Fungal Biol ; 115(6): 446-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21640311

RESUMO

Neurospora crassa has been at the forefront of biological research from the early days of biochemical genetics to current progress being made in understanding gene and genetic network function. Here, we discuss recent developments in analysis of the fundamental form of fungal growth, development and proliferation -- the hypha. Understanding the establishment and maintenance of polarity, hyphal elongation, septation, branching and differentiation are at the core of current research. The advances in the identification and functional dissection of regulatory as well as structural components of the hypha provide an expanding basis for elucidation of fundamental attributes of the fungal cell. The availability and continuous development of various molecular and microscopic tools, as utilized by an active and co-supportive research community, promises to yield additional important new discoveries on the biology of fungi.


Assuntos
Polaridade Celular , Hifas/citologia , Neurospora crassa/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Modelos Biológicos , Neurospora crassa/citologia , Neurospora crassa/genética , Neurospora crassa/metabolismo
7.
Adv Genet ; 57: 49-96, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17352902

RESUMO

A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.


Assuntos
Neurospora/genética , Sequência de Bases , Mapeamento Cromossômico , DNA Fúngico/genética , Deleção de Genes , Perfilação da Expressão Gênica , Biblioteca Gênica , Técnicas Genéticas , Genoma Fúngico , Genômica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
Microbiol Mol Biol Rev ; 68(1): 1-108, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15007097

RESUMO

We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Neurospora crassa , Animais , Biologia Computacional , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Micoses/microbiologia , Neurospora crassa/química , Neurospora crassa/genética , Neurospora crassa/metabolismo , Neurospora crassa/patogenicidade , Doenças das Plantas/microbiologia
9.
Curr Opin Microbiol ; 6(6): 628-33, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14662360

RESUMO

In filamentous fungi, the actin cytoskeleton is required for polarity establishment and maintenance at hyphal tips and for formation of a contractile ring at sites of septation. Recently, formins have been identified as Arp (actin-related protein) 2/3-independent nucleators of actin polymerization, and filamentous fungi contain a single formin that localizes to both sites. Work on cytoplasmic dynein and members of the kinesin and myosin families of motors has continued to reveal new information regarding the function and regulation of motors as well as demonstrate the importance of microtubules in the long-distance transport of vesicles/organelles in the filamentous fungi.


Assuntos
Aspergillus/fisiologia , Citoesqueleto/fisiologia , Proteínas Motores Moleculares/fisiologia , Transporte Biológico
10.
Mol Biol Cell ; 14(11): 4352-64, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12960438

RESUMO

Cellular polarity is a fundamental property of every cell. Due to their extremely fast growth rate (>/=1 microm/s) and their highly elongated form, filamentous fungi represent a prime example of polarized growth and are an attractive model for the analysis of fundamental mechanisms underlying cellular polarity. To identify the critical components that contribute to polarized growth, we developed a large-scale genetic screen for the isolation of conditional mutants defective in this process in the model fungus Neurospora crassa. Phenotypic analysis and complementation tests of ca. 950 mutants identified more than 100 complementation groups that define 21 distinct morphological classes. The phenotypes include polarity defects over the whole hypha, more specific defects localized to hyphal tips or subapical regions, and defects in branch formation and growth directionality. To begin converting this mutant collection into meaningful biological information, we identified the defective genes in 45 mutants covering all phenotypic classes. These genes encode novel proteins as well as proteins which 1) regulate the actin or microtubule cytoskeleton, 2) are kinases or components of signal transduction pathways, 3) are part of the secretory pathway, or 4) have functions in cell wall formation or membrane biosynthesis. These findings highlight the dynamic nature of a fungal hypha and establish a molecular model for studies of hyphal growth and polarity.


Assuntos
Hifas/genética , Morfogênese/genética , Neurospora crassa/genética , Polaridade Celular , Hifas/citologia , Mutação , Neurospora crassa/citologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...