Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Clin Cancer Res ; 30(4): 786-792, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38109210

RESUMO

PURPOSE: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) is a precision medicine basket trial designed to test the effectiveness of treating cancers based on specific genetic changes in patients' tumors, regardless of cancer type. Multiple subprotocols have each tested different targeted therapies matched to specific genetic aberrations. Most subprotocols exhibited low rates of tumor shrinkage as evaluated across all tumor types enrolled. We hypothesized that these results may arise because these precision cancer therapies have tumor type-specific efficacy, as is common among other cancer therapies. EXPERIMENTAL DESIGN: To test the hypothesis that certain tumor types are more sensitive to specific therapies than other tumor types, we applied permutation testing to tumor volume change and progression-free survival data from 10 published NCI-MATCH subprotocols (together n = 435 patients). FDR was controlled by the Benjamini-Hochberg procedure. RESULTS: Six of ten subprotocols exhibited statistically significant evidence of tumor-specific drug sensitivity, four of which were previously considered negative based on response rate across all tumors. This signal-finding analysis highlights potential uses of FGFR tyrosine kinase inhibition in urothelial carcinomas with actionable FGFR aberrations and MEK inhibition in lung cancers with BRAF non-V600E mutations. In addition, it identifies low-grade serious ovarian carcinoma with BRAF v600E mutation as especially sensitive to BRAF and MEK co-inhibition (dabrafenib plus trametinib), a treatment that received accelerated FDA approval for advanced solid tumors with BRAF v600E mutation. CONCLUSIONS: These findings support the value of basket trials because even when precision medicines do not have tumor-agnostic activity, basket trials can identify tumor-specific activity for future study.


Assuntos
Neoplasias Pulmonares , Medicina de Precisão , Estados Unidos , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , National Cancer Institute (U.S.) , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Piridonas/uso terapêutico
2.
Nat Cancer ; 4(12): 1693-1704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37974028

RESUMO

Most advanced cancers are treated with drug combinations. Rational design aims to identify synergistic combinations, but existing synergy metrics apply to preclinical, not clinical data. Here we propose a model of drug additivity for progression-free survival (PFS) to assess whether clinical efficacies of approved drug combinations are additive or synergistic. This model includes patient-to-patient variability in best single-drug response plus the weaker drug per patient. Among US Food and Drug Administration approvals of drug combinations for advanced cancers (1995-2020), 95% exhibited additive or less than additive effects on PFS times. Among positive or negative phase 3 trials published between 2014-2018, every combination that improved PFS was expected to succeed by additivity (100% sensitivity) and most failures were expected to fail (78% specificity). This study shows synergy is neither a necessary nor common property of clinically effective drug combinations. The predictable efficacy of approved combinations suggests that additivity can be a design principle for combination therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Estados Unidos , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Terapia Combinada , Combinação de Medicamentos
3.
Cancer Res Commun ; 3(6): 1140-1151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37397861

RESUMO

Artificial intelligence (AI) and machine learning (ML) are becoming critical in developing and deploying personalized medicine and targeted clinical trials. Recent advances in ML have enabled the integration of wider ranges of data including both medical records and imaging (radiomics). However, the development of prognostic models is complex as no modeling strategy is universally superior to others and validation of developed models requires large and diverse datasets to demonstrate that prognostic models developed (regardless of method) from one dataset are applicable to other datasets both internally and externally. Using a retrospective dataset of 2,552 patients from a single institution and a strict evaluation framework that included external validation on three external patient cohorts (873 patients), we crowdsourced the development of ML models to predict overall survival in head and neck cancer (HNC) using electronic medical records (EMR) and pretreatment radiological images. To assess the relative contributions of radiomics in predicting HNC prognosis, we compared 12 different models using imaging and/or EMR data. The model with the highest accuracy used multitask learning on clinical data and tumor volume, achieving high prognostic accuracy for 2-year and lifetime survival prediction, outperforming models relying on clinical data only, engineered radiomics, or complex deep neural network architecture. However, when we attempted to extend the best performing models from this large training dataset to other institutions, we observed significant reductions in the performance of the model in those datasets, highlighting the importance of detailed population-based reporting for AI/ML model utility and stronger validation frameworks. We have developed highly prognostic models for overall survival in HNC using EMRs and pretreatment radiological images based on a large, retrospective dataset of 2,552 patients from our institution.Diverse ML approaches were used by independent investigators. The model with the highest accuracy used multitask learning on clinical data and tumor volume.External validation of the top three performing models on three datasets (873 patients) with significant differences in the distributions of clinical and demographic variables demonstrated significant decreases in model performance. Significance: ML combined with simple prognostic factors outperformed multiple advanced CT radiomics and deep learning methods. ML models provided diverse solutions for prognosis of patients with HNC but their prognostic value is affected by differences in patient populations and require extensive validation.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Humanos , Prognóstico , Estudos Retrospectivos , Inteligência Artificial , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem
4.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034644

RESUMO

Background: NCI-MATCH is a precision medicine basket trial designed to test the effectiveness of treating cancers based on specific genetic changes in patients' tumors, regardless of cancer type. Multiple subprotocols have each tested different targeted therapies matched to specific genetic aberrations. Most subprotocols exhibited low rates of tumor shrinkage as evaluated across all tumor types enrolled. We hypothesized that these results may arise because these precision cancer therapies have tumor type-specific efficacy, as is common among other cancer therapies. Methods: To test the hypothesis that certain tumor types are more sensitive to specific therapies than other tumor types, we applied permutation testing to tumor volume change and progression-free survival data from ten published NCI-MATCH subprotocols (together n=435 patients). False discovery rate was controlled by the Benjamini-Hochberg procedure. Results: Six of ten subprotocols exhibited statistically significant evidence of tumor-specific drug sensitivity, four of which were previously considered negative based on response rate across all tumors. This signal-finding analysis highlights potential uses of FGFR tyrosine kinase inhibition in urothelial carcinomas with actionable FGFR aberrations, MEK inhibition in lung cancers with BRAF non-V600E mutations, and MEK inhibition in cholangiocarcinomas with NRAS mutations. Conclusions: These findings support the value of basket trials because even when precision medicines do not have tumor-agnostic activity, basket trials can identify tumor-specific activity for future study.

5.
Cancer Med ; 12(4): 4715-4724, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36398619

RESUMO

BACKGROUND: Cancer trial accrual is a national priority, yet up to 20% of trials fail to accrue. Trial eligibility criteria growth may be associated with accrual failure. We sought to quantify eligibility criteria growth within National Cancer Institute (NCI)-affiliated trials and determine impact on accrual. METHODS: Utilizing the Aggregated Analysis of ClinicalTrials.gov, we analyzed phase II/III interventional NCI-affiliated trials initiated between 2008 and 2018. Eligibility criteria growth was assessed via number of unique content words within combined inclusion and exclusion criteria. Association between unique word count and accrual failure was evaluated with multivariable logistic regression, adjusting for known predictors of failure. Medical terms associated with accrual failure were identified via natural language processing and categorized. RESULTS: Of 1197 trials, 231 (19.3%) failed due to low accrual. Accrual failure rate increased with eligibility criteria growth, from 11.8% in the lowest decile (12-112 words) to 29.4% in the highest decile (445-750 words). Median eligibility criteria increased over time, from 214 (IQR [23, 282]) unique content words in 2008 to 417 (IQR [289, 514]) in 2018 (r2  = 0.73, P < 0.001). Eligibility criteria growth was independently associated with accrual failure (OR: 1.09 per decile, 95% CI [1.03-1.15], p = 0.004). Eighteen exclusion criteria categories were significantly associated with accrual failure, including renal, pulmonary, and diabetic, among others (Bonferroni-corrected p < 0.001). CONCLUSIONS: Eligibility criteria content growth is increasing dramatically among NCI-affiliated trials and is strongly associated with accrual failure. These findings support national initiatives to simplify eligibility criteria and suggest that further efforts are warranted to improve cancer trial accrual.


Assuntos
Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Projetos de Pesquisa , Seleção de Pacientes , Modelos Logísticos
6.
JAMA Netw Open ; 5(9): e2233946, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173632

RESUMO

Importance: Despite the potential of machine learning to improve multiple aspects of patient care, barriers to clinical adoption remain. Randomized clinical trials (RCTs) are often a prerequisite to large-scale clinical adoption of an intervention, and important questions remain regarding how machine learning interventions are being incorporated into clinical trials in health care. Objective: To systematically examine the design, reporting standards, risk of bias, and inclusivity of RCTs for medical machine learning interventions. Evidence Review: In this systematic review, the Cochrane Library, Google Scholar, Ovid Embase, Ovid MEDLINE, PubMed, Scopus, and Web of Science Core Collection online databases were searched and citation chasing was done to find relevant articles published from the inception of each database to October 15, 2021. Search terms for machine learning, clinical decision-making, and RCTs were used. Exclusion criteria included implementation of a non-RCT design, absence of original data, and evaluation of nonclinical interventions. Data were extracted from published articles. Trial characteristics, including primary intervention, demographics, adherence to the CONSORT-AI reporting guideline, and Cochrane risk of bias were analyzed. Findings: Literature search yielded 19 737 articles, of which 41 RCTs involved a median of 294 participants (range, 17-2488 participants). A total of 16 RCTS (39%) were published in 2021, 21 (51%) were conducted at single sites, and 15 (37%) involved endoscopy. No trials adhered to all CONSORT-AI standards. Common reasons for nonadherence were not assessing poor-quality or unavailable input data (38 trials [93%]), not analyzing performance errors (38 [93%]), and not including a statement regarding code or algorithm availability (37 [90%]). Overall risk of bias was high in 7 trials (17%). Of 11 trials (27%) that reported race and ethnicity data, the median proportion of participants from underrepresented minority groups was 21% (range, 0%-51%). Conclusions and Relevance: This systematic review found that despite the large number of medical machine learning-based algorithms in development, few RCTs for these technologies have been conducted. Among published RCTs, there was high variability in adherence to reporting standards and risk of bias and a lack of participants from underrepresented minority groups. These findings merit attention and should be considered in future RCT design and reporting.


Assuntos
Bibliometria , Aprendizado de Máquina , Viés , Atenção à Saúde , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Radiol Artif Intell ; 4(3): e210285, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35652117

RESUMO

Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging-based artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly documented in imaging metadata, necessitating impractical manual annotation by clinician experts. Authors developed a convolutional neural network (CNN)-based deep learning platform to identify intravenous contrast enhancement on CT scans. For model development and validation, authors used six independent datasets of head and neck (HN) and chest CT scans, totaling 133 480 axial two-dimensional sections from 1979 scans, which were manually annotated by clinical experts. Five CNN models were trained first on HN scans for contrast enhancement detection. Model performances were evaluated at the patient level on a holdout set and external test set. Models were then fine-tuned on chest CT data and externally validated. This study found that Digital Imaging and Communications in Medicine metadata tags for intravenous contrast material were missing or erroneous for 1496 scans (75.6%). An EfficientNetB4-based model showed the best performance, with areas under the curve (AUCs) of 0.996 and 1.0 in HN holdout (n = 216) and external (n = 595) sets, respectively, and AUCs of 1.0 and 0.980 in the chest holdout (n = 53) and external (n = 402) sets, respectively. This automated, scan-to-prediction platform is highly accurate at CT contrast enhancement detection and may be helpful for artificial intelligence model development and clinical application. Keywords: CT, Head and Neck, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Machine Learning Algorithms, Contrast Material Supplemental material is available for this article. © RSNA, 2022.

8.
Nat Commun ; 13(1): 873, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169116

RESUMO

Individual participant data (IPD) from oncology clinical trials is invaluable for identifying factors that influence trial success and failure, improving trial design and interpretation, and comparing pre-clinical studies to clinical outcomes. However, the IPD used to generate published survival curves are not generally publicly available. We impute survival IPD from ~500 arms of Phase 3 oncology trials (representing ~220,000 events) and find that they are well fit by a two-parameter Weibull distribution. Use of Weibull functions with overall survival significantly increases the precision of small arms typical of early phase trials: analysis of a 50-patient trial arm using parametric forms is as precise as traditional, non-parametric analysis of a 90-patient arm. We also show that frequent deviations from the Cox proportional hazards assumption, particularly in trials of immune checkpoint inhibitors, arise from time-dependent therapeutic effects. Trial duration therefore has an underappreciated impact on the likelihood of success.


Assuntos
Sobreviventes de Câncer/estatística & dados numéricos , Ensaios Clínicos como Assunto/métodos , Neoplasias/mortalidade , Neoplasias/terapia , Projetos de Pesquisa/estatística & dados numéricos , Humanos , Estimativa de Kaplan-Meier , Modelos Estatísticos , Modelos de Riscos Proporcionais
9.
Cancer Discov ; 12(3): 606-624, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983746

RESUMO

Combination therapies are superior to monotherapy for many cancers. This advantage was historically ascribed to the ability of combinations to address tumor heterogeneity, but synergistic interaction is now a common explanation as well as a design criterion for new combinations. We review evidence that independent drug action, described in 1961, explains the efficacy of many practice-changing combination therapies: it provides populations of patients with heterogeneous drug sensitivities multiple chances of benefit from at least one drug. Understanding response heterogeneity could reveal predictive or pharmacodynamic biomarkers for more precise use of existing drugs and realize the benefits of additivity or synergy. SIGNIFICANCE: The model of independent drug action represents an effective means to predict the magnitude of benefit likely to be observed in new clinical trials for combination therapies. The "bet-hedging" strategy implicit in independent action suggests that individual patients often benefit from only a subset-sometimes one-of the drugs in a combination. Personalized, targeted combination therapy, consisting of agents likely to be active in a particular patient, will increase, perhaps substantially, the magnitude of therapeutic benefit. Precision approaches of this type will require a better understanding of variability in drug response and new biomarkers, which will entail preclinical research on diverse panels of cancer models rather than studying drug synergy in unusually sensitive models.


Assuntos
Neoplasias , Biomarcadores , Terapia Combinada , Quimioterapia Combinada , Humanos , Oncologia , Neoplasias/tratamento farmacológico , Medicina de Precisão
10.
Front Bioeng Biotechnol ; 9: 690905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552915

RESUMO

The rapid spread of COVID-19 and disruption of normal supply chains has resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria for PAPRs represents a substantial barrier to mitigating shortages. We sought to apply open-source product development (OSPD) to PAPRs to enable alternative sources of supply and further innovation. We describe the design, prototyping, validation, and user testing of locally manufactured, modular, PAPR components, including filter cartridges and blower units, developed by the Greater Boston Pandemic Fabrication Team (PanFab). Two designs, one with a fully custom-made filter and blower unit housing, and the other with commercially available variants (the "Custom" and "Commercial" designs, respectively) were developed; the components in the Custom design are interchangeable with those in Commercial design, although the form factor differs. The engineering performance of the prototypes was measured and safety validated using National Institutes for Occupational Safety and Health (NIOSH)-equivalent tests on apparatus available under pandemic conditions at university laboratories. Feedback was obtained from four individuals; two clinicians working in ambulatory clinical care and two research technical staff for whom PAPR use is standard occupational PPE; these individuals were asked to compare PanFab prototypes to commercial PAPRs from the perspective of usability and suggest areas for improvement. Respondents rated the PanFab Custom PAPR a 4 to 5 on a 5 Likert-scale 1) as compared to current PPE options, 2) for the sense of security with use in a clinical setting, and 3) for comfort compared to standard, commercially available PAPRs. The three other versions of the designs (with a Commercial blower unit, filter, or both) performed favorably, with survey responses consisting of scores ranging from 3 to 5. Engineering testing and clinical feedback demonstrate that the PanFab designs represent favorable alternatives to traditional PAPRs in terms of user comfort, mobility, and sense of security. A nonrestrictive license promotes innovation in respiratory protection for current and future medical emergencies.

11.
BMC Infect Dis ; 21(1): 712, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325673

RESUMO

BACKGROUND: The COVID-19 pandemic has severely disrupted supply chains for many types of Personal Protective Equipment (PPE), particularly surgical N95 filtering facepiece respirators (FFRs; "masks"). As a consequence, an Emergency Use Authorization (EUA) from the FDA has allowed use of industrial N95 respirators and importation of N95-type masks manufactured to international standards; these include KN95 masks from China and FFP2 masks from the European Union. METHODS: We conducted a survey of masks in the inventory of major academic medical centers in Boston, MA to determine provenance and manufacturer or supplier. We then assembled a testing apparatus at a university laboratory and performed a modified test of filtration performance using KCl and ambient particulate matter on masks from hospital inventories; an accompanying website shows how to build and use the testing apparatus. RESULTS: Over 100 different makes and models of traditional and nontraditional filtering facepiece respirators (N95-type masks) were in the inventory of surveyed U.S. teaching hospitals as opposed to 2-5 models under normal circumstances. A substantial number of unfamiliar masks are from unknown manufacturers. Many are not correctly labelled and do not perform to accepted standards and a subset are obviously dangerous; many of these masks are likely to be counterfeit. Due to the absence of publicly available information on mask suppliers and inconsistent labeling of KN95 masks, it is difficult to distinguish between legitimate and counterfeit products. CONCLUSIONS: Many FFRs available for procurement during the COVID-19 pandemic do not provide levels of fit and filtration similar to those of N95 masks and are not acceptable for use in healthcare settings. Based on these results, and in consultation with occupational health officers, we make six recommendations to assist end users in acquiring legitimate products. Institutions should always assess masks from non-traditional supply chains by checking their markings and manufacturer information against data provided by NIOSH and the latest FDA EUA Appendix A. In the absence of verifiable information on the legitimacy of mask source, institutions should consider measuring mask fit and filtration directly. We also make suggestions for regulatory agencies regarding labeling and public disclosure aimed at increasing pandemic resilience.


Assuntos
COVID-19 , Exposição Ocupacional , Dispositivos de Proteção Respiratória , Humanos , Máscaras , Pandemias/prevenção & controle , SARS-CoV-2 , Ventiladores Mecânicos
12.
BMC Biomed Eng ; 3(1): 10, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099062

RESUMO

BACKGROUND: In response to supply shortages caused by the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or "masks"), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under "reuse" and "extended use" policies. However, the reusability of N95 masks is limited by degradation of fit. Possible substitutes, such as KN95 masks meeting Chinese standards, frequently fail fit testing even when new. The purpose of this study was to develop an inexpensive frame for damaged and poorly fitting masks using readily available materials and 3D printing. RESULTS: An iterative design process yielded a mask frame consisting of two 3D printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n = 45; average BMI = 25.4), underwent qualitative fit testing with and without mask frames wearing one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 to 94 % (depending on mask model). For individuals who underwent testing using respirators with broken or defective straps, 80-100 % (average 85 %) passed fit testing with mask frames. Among individuals who failed fit testing with a KN95, ~ 50 % passed testing by using a frame. CONCLUSIONS: Our study suggests that mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Use of frames made it possible for ~ 73 % of the test population to achieve a good fit based on qualitative and quantitative testing criteria, approaching the 85-90 % success rate observed for intact N95 masks. Frames therefore represent a simple and inexpensive way of expanding access to PPE and extending their useful life. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, fit testing with user-specific masks and PanFab frames is required.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33899045

RESUMO

The disruption of conventional manufacturing, supply, and distribution channels during the COVID-19 pandemic caused widespread shortages in personal protective equipment (PPE) and other medical supplies. These shortages catalyzed local efforts to use nontraditional, rapid manufacturing to meet urgent healthcare needs. Here we present a crisis-responsive design framework designed to assist with product development under pandemic conditions. The framework emphasizes stakeholder engagement, comprehensive but efficient needs assessment, rapid manufacturing, and modified product testing to enable accelerated development of healthcare products. We contrast this framework with traditional medical device manufacturing that proceeds at a more deliberate pace, discuss strengths and weakness of pandemic-responsive fabrication, and consider relevant regulatory policies. We highlight the use of the crisis-responsive framework in a case study of face shield design and production for a large US academic hospital. Finally, we make recommendations aimed at improving future resilience to pandemics and healthcare emergencies. These include continued development of open source designs suitable for rapid manufacturing, education of maker communities and hospital administrators about rapidly-manufactured medical devices, and changes in regulatory policy that help strike a balance between quality and innovation.

14.
medRxiv ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33821290

RESUMO

The rapid spread of COVID-19 and disruption of normal supply chains resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria represents a substantial barrier to new approaches to address these shortages. We sought to apply open-source product development to PAPRs to enable alternative sources of supply and further innovation. We describe the design, prototyping, validation, and user testing of locally manufactured, modular, PAPR components, including filter cartridges and blower units, developed by the Greater Boston Pandemic Fabrication Team (PanFab). Two designs, one with a fully custom-made filter and blower unit housing, and the other with commercially available variants (the "Custom" and "Commercial" designs respectively) were developed. Engineering performance of the prototypes was measured and safety validated using NIOSH-equivalent tests on apparatus available under pandemic conditions, at university laboratories. Feedback on designs was obtained from four individuals, including two clinicians working in an ambulatory clinical setting and two research technical staff for whom PAPR use is a standard part of occupational PPE. Respondents rated the PanFab Custom PAPR a 4 to 5 on a 5 Likert-scale 1) as compared to current PPE options, 2) for the sense of security with use in a clinical setting, and 3) for comfort. The three other versions of the designs (with a commercial blower unit, filter, or both) performed favorably, with survey responses consisting of scores ranging from 3-5. Engineering testing and clinical feedback demonstrate that the PanFab designs represents favorable alternative PAPRs in terms of user comfort, mobility, and sense of security. A nonrestrictive license promotes innovation in respiratory protection for current and future medical emergencies.

16.
Sci Rep ; 11(1): 2051, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479334

RESUMO

The COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including of N95 masks (filtering facepiece respirators; FFRs). These masks are intended for single use but their sterilization and subsequent reuse has the potential to substantially mitigate shortages. Here we investigate PPE sterilization using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD), in a sealed environment chamber. The efficacy of sterilization by iHP was assessed using bacterial spores in biological indicator assemblies. After one or more iHP treatments, five models of N95 masks from three manufacturers were assessed for retention of function based on their ability to form an airtight seal (measured using a quantitative fit test) and filter aerosolized particles. Filtration testing was performed at a university lab and at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain filtration efficiency up to ten cycles, the maximum number tested to date. A typical iHP environment chamber with a volume of ~ 80 m3 can treat ~ 7000 masks and other items (e.g. other PPE, iPADs), making this an effective approach for a busy medical center.


Assuntos
Peróxido de Hidrogênio/farmacologia , Respiradores N95/virologia , Equipamento de Proteção Individual/virologia , Esterilização/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Reutilização de Equipamento/estatística & dados numéricos , Humanos , Respiradores N95/provisão & distribuição , Pandemias/prevenção & controle , Equipamento de Proteção Individual/provisão & distribuição , Dispositivos de Proteção Respiratória , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
17.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188016

RESUMO

Immune checkpoint inhibitors (ICIs) show promise, but most patients do not respond. We identify and validate biomarkers from extracellular vesicles (EVs), allowing non-invasive monitoring of tumor- intrinsic and host immune status, as well as a prediction of ICI response. We undertook transcriptomic profiling of plasma-derived EVs and tumors from 50 patients with metastatic melanoma receiving ICI, and validated with an independent EV-only cohort of 30 patients. Plasma-derived EV and tumor transcriptomes correlate. EV profiles reveal drivers of ICI resistance and melanoma progression, exhibit differentially expressed genes/pathways, and correlate with clinical response to ICI. We created a Bayesian probabilistic deconvolution model to estimate contributions from tumor and non-tumor sources, enabling interpretation of differentially expressed genes/pathways. EV RNA-seq mutations also segregated ICI response. EVs serve as a non-invasive biomarker to jointly probe tumor-intrinsic and immune changes to ICI, function as predictive markers of ICI responsiveness, and monitor tumor persistence and immune activation.

18.
Cell Syst ; 11(5): 449-460.e2, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33220857

RESUMO

The need to test anticancer drugs in multiple indications has been addressed by basket trials, which are Phase I or II clinical trials involving multiple tumor subtypes and a single master protocol. Basket trials typically involve few patients per type, making it challenging to rigorously compare responses across types. We describe the use of permutation testing to test for differences among subgroups using empirical null distributions and the Benjamini-Hochberg procedure to control for false discovery. We apply the approach retrospectively to tumor-volume changes and progression-free survival in published basket trials for neratinib, larotrectinib, pembrolizumab, and imatinib and uncover examples of therapeutic benefit missed by conventional binomial testing. For example, we identify an overlooked opportunity for use of neratinib in lung cancers carrying ERBB2 Exon 20 mutations. Permutation testing can be used to design basket trials but is more conservatively introduced alongside established approaches to enrollment such as Simon's two-stage design.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Farmacológicos/análise , Neoplasias/tratamento farmacológico , Humanos , Modelos Estatísticos , Neoplasias/genética , Projetos de Pesquisa , Estudos Retrospectivos , Resultado do Tratamento
19.
Open Forum Infect Dis ; 7(9): ofaa396, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32989420

RESUMO

Proper disinfection using adequate disinfecting agents will be necessary for infection control strategies against coronavirus disease 2019 (COVID-19). However, limited guidance exists on effective surface disinfectants or best practices for their use against severe acute respiratory coronavirus 2. We outlined a process of fully characterizing over 350 products on the Environmental Protection Agency List N, including pH, method of delivery, indication for equipment sterilization, and purchase availability. We then developed a streamlined set of guidelines to help rapidly evaluate and select suitable disinfectants from List N, including practicality, efficacy, safety, and cost/availability. This resource guides the evaluation of ideal disinfectants amidst practical considerations posed by the COVID-19 pandemic.

20.
medRxiv ; 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32743596

RESUMO

BACKGROUND: During the current COVID-19 pandemic, supply chains for Personal Protective Equipment (PPE) have been severely disrupted and many products, particularly surgical N95 filtering facepiece respirators (FFRs; "masks") are in short supply. As a consequence, an Emergency Use Authorization (EUA) from the FDA has allowed importation of N95-type masks manufactured to international standards; these include KN95 masks from China and FFP2 masks from the European Union. METHODS: We conducted a survey of mask in the inventory of major academic medical centers in Boston, MA to determine provenance and manufacturer. We then assembled a simple apparatus for performing a necessary (but not sufficient) test of filtration performance and tested masks from the inventory; an accompanying website shows how to build and use the testing apparatus. RESULTS: Our survey showed that, seven months after the start of the COVID-19 pandemic, over 100 different makes and models of N95-type masks are in the inventory of local hospitals as opposed to 2-5 models under normal circumstances. A substantial number of unfamiliar masks are from unknown manufacturers. Many did not perform to accepted standards and are likely to be counterfeit. Due to the absence of publicly available information on mask suppliers in the FDA EUA and confusing or inconsistent labeling of KN95 masks, it is difficult to distinguish legitimate and counterfeit products. CONCLUSIONS: Many of the FFR masks available for procurement during the COVID-19 pandemic do not provide levels of fit and filtration similar to those of N95 masks and are not acceptable for use in healthcare settings. Based on these results, and in consultation with occupational health officers, we make six recommendations for end users to assist in acquiring legitimate products. In particular, institutions should always assess masks from non-traditional supply chains by checking their markings and manufacturer information against data provided by NIOSH and the latest FDA EUA Appendix A. In the absence of verifiable information on the legitimacy of mask source, institutions should consider measuring mask fit and filtration directly. We also make suggestions for U.S and Chinese regulatory agencies with regard to labeling and public disclosure aimed at increase pandemic resilience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...