Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699331

RESUMO

HIV-1 eradication strategies require complete reactivation of HIV-1 latent cells by Latency Reversing Agents (LRA). Current methods lack effectiveness due to incomplete proviral reactivation. We employed a single-molecule RNA-FISH (smRNA-FISH) and FISH-Quant analysis and found that proviral reactivation is highly variable from cell-to-cell, stochastic, and occurs in bursts and waves, with different kinetics in response to diverse LRAs. Approximately 1-5% of latent cells exhibited stochastic reactivation without LRAs. Through single-cell RNA-seq analysis, we identified NR4A3 and cMYC as extrinsic factors associated with stochastic HIV-1 reactivation. Concomitant with HIV-1 reactivation cMYC was downregulated and NR4A3 was upregulated in both latent cell lines and primary CD4+ T-cells from aviremic patients. By inhibiting cMYC using SN-38, an active metabolite of irinotecan, we induced NR4A3 and HIV-1 expression. Our results suggest that inherent stochasticity in proviral reactivation contributes to cell-to-cell variability, which could potentially be modulated by drugs targeting cMYC and NR4A3.

2.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961575

RESUMO

The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and COVID-19 suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We investigated the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and non-classical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients and uninfected control subjects. We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. In conclusion, SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.

3.
Front Immunol ; 14: 1329026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250080

RESUMO

Introduction: The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients. Methods: Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively. Results: We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. Conclusion: SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.


Assuntos
COVID-19 , Humanos , Monócitos , Leucócitos Mononucleares , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Lipopolissacarídeos
4.
medRxiv ; 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36238724

RESUMO

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of interferon gamma (IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

5.
Viruses ; 14(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298843

RESUMO

Immune cell state alterations rewire HIV-1 gene expression, thereby influencing viral latency and reactivation, but the mechanisms are still unfolding. Here, using a screen approach on CD4+ T cell models of HIV-1 latency, we revealed Small Molecule Reactivators (SMOREs) with unique chemistries altering the CD4+ T cell state and consequently promoting latent HIV-1 transcription and reactivation through an unprecedented mechanism of action. SMOREs triggered rapid oxidative stress and activated a redox-responsive program composed of cell-signaling kinases (MEK-ERK axis) and atypical transcription factor (AP-1 and HIF-1α) cooperativity. SMOREs induced an unusual AP-1 phosphorylation signature to promote AP-1/HIF-1α binding to the latent HIV-1 proviral genome for its activation. Consistently, latent HIV-1 reactivation was compromised with pharmacologic inhibition of oxidative stress sensing or of cell-signaling kinases, and transcription factor's loss of expression, thus functionally linking the host redox-responsive program to viral transcriptional rewiring. Notably, SMOREs induced the redox program in primary CD4+ T cells and reactivated latent HIV-1 in aviremic patient samples alone and in combination with known latency-reversing agents, thus providing physiological relevance. Our findings suggest that manipulation of redox-sensitive pathways could be exploited to alter the course of HIV-1 latency, thus rendering host cells responsive to help achieve a sterilizing cure.


Assuntos
Infecções por HIV , HIV-1 , Fator de Transcrição AP-1 , Ativação Viral , Latência Viral , Humanos , Linfócitos T CD4-Positivos , Infecções por HIV/genética , Infecções por HIV/imunologia , Soropositividade para HIV/genética , Soropositividade para HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Células Jurkat , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Oxirredução , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Ativação Viral/genética , Ativação Viral/imunologia , Latência Viral/genética , Latência Viral/imunologia
6.
PLoS One ; 17(8): e0272867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960731

RESUMO

The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with ß2-microglobulin (ß2M) and peptides, which may impede the adequate formation of stable HLA-C/ß2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.


Assuntos
COVID-19 , Idoso , Alelos , COVID-19/genética , Antígenos HLA-C/genética , Humanos , Masculino , Peptídeos/genética , Projetos Piloto , SARS-CoV-2
7.
J Leukoc Biol ; 112(5): 1343-1356, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35588262

RESUMO

Macrophages chronically infected with HIV-1 serve as a reservoir that contributes to HIV-1 persistence during antiretroviral therapy; however, the mechanisms governing the establishment and maintenance of this virus reservoir have not been fully elucidated. Here, we show that HIV-1 enters a state reminiscent of latency in monocyte-derived macrophages (MDMs), characterized by integrated proviral DNA with decreased viral transcription. This quiescent state is associated with decreased NF-κB p65, RNA polymerase II, and p-TEFb recruitment to the HIV-1 promoter as well as maintenance of promoter chromatin in a transcriptionally nonpermissive state. MDM transition to viral latency is mediated by type I IFN signaling, as inhibiting type I IFN signaling or blocking type 1 IFN prevents the establishment of latent infection. Knockdown studies demonstrate that the innate immune signaling molecule mitochondrial antiviral signaling protein (MAVS) is required for the transition to latency. Finally, we demonstrate a role for the viral accessory protein Vpr in the establishment of HIV-1 latency in macrophages. Our data indicate that HIV-1-induced type I IFN production is responsible for the establishment of viral latency in MDMs and identify possible therapeutic targets for the prevention or elimination of this important HIV-1 reservoir.


Assuntos
Infecções por HIV , HIV-1 , Interferon Tipo I , Macrófagos , Latência Viral , Humanos , Cromatina , Infecções por HIV/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , NF-kappa B/metabolismo , Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II , Ativação Viral , Interferon Tipo I/imunologia
8.
Front Immunol ; 13: 848886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401523

RESUMO

Long-COVID is a new emerging syndrome worldwide that is characterized by the persistence of unresolved signs and symptoms of COVID-19 more than 4 weeks after the infection and even after more than 12 weeks. The underlying mechanisms for Long-COVID are still undefined, but a sustained inflammatory response caused by the persistence of SARS-CoV-2 in organ and tissue sanctuaries or resemblance with an autoimmune disease are within the most considered hypotheses. In this study, we analyzed the usefulness of several demographic, clinical, and immunological parameters as diagnostic biomarkers of Long-COVID in one cohort of Spanish individuals who presented signs and symptoms of this syndrome after 49 weeks post-infection, in comparison with individuals who recovered completely in the first 12 weeks after the infection. We determined that individuals with Long-COVID showed significantly increased levels of functional memory cells with high antiviral cytotoxic activity such as CD8+ TEMRA cells, CD8±TCRγδ+ cells, and NK cells with CD56+CD57+NKG2C+ phenotype. The persistence of these long-lasting cytotoxic populations was supported by enhanced levels of CD4+ Tregs and the expression of the exhaustion marker PD-1 on the surface of CD3+ T lymphocytes. With the use of these immune parameters and significant clinical features such as lethargy, pleuritic chest pain, and dermatological injuries, as well as demographic factors such as female gender and O+ blood type, a Random Forest algorithm predicted the assignment of the participants in the Long-COVID group with 100% accuracy. The definition of the most accurate diagnostic biomarkers could be helpful to detect the development of Long-COVID and to improve the clinical management of these patients.


Assuntos
COVID-19 , Biomarcadores , Linfócitos T CD8-Positivos , COVID-19/complicações , Feminino , Humanos , Imunidade , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
9.
Nat Commun ; 13(1): 1109, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232997

RESUMO

Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Infecções por HIV , HIV-1 , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas p21(ras) , Linfócitos T , Fator de Transcrição AP-1 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD4-Positivos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Viral , Latência Viral
10.
Pathogens ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35215107

RESUMO

HIV-1 infection of myeloid cells is associated with the induction of an IFN response. How HIV-1 manipulates and subverts the IFN response is of key interest for the design of therapeutics to improve immune function and mitigate immune dysregulation in people living with HIV. HIV-1 accessory genes function to improve viral fitness by altering host pathways in ways that enable transmission to occur without interference from the immune response. We previously described changes in transcriptomes from HIV-1 infected and from IFN-stimulated macrophages and noted that transcription of IFN-regulated genes and genes related to cell cycle processes were upregulated during HIV-1 infection. In the present study, we sought to define the roles of individual viral accessory genes in upregulation of IFN-regulated and cell cycle-related genes using RNA sequencing. We observed that Vif induces a set of genes involved in mitotic processes and that these genes are potently downregulated upon stimulation with type-I and -II IFNs. Vpr also upregulated cell cycle-related genes and was largely responsible for inducing an attenuated IFN response. We note that the induced IFN response most closely resembled a type-III IFN response. Vpu and Nef-regulated smaller sets of genes whose transcriptomic signatures upon infection related to cytokine and chemokine processes. This work provides more insight regarding processes that are manipulated by HIV-1 accessory proteins at the transcriptional level.

11.
Virulence ; 13(1): 386-413, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35166645

RESUMO

HIV-1 cDNA pre-integration complexes persist for weeks in macrophages and remain transcriptionally active. While previous work has focused on the transcription of HIV-1 genes; our understanding of the cellular milieu that accompanies viral production is incomplete. We have used an in vitro system to model HIV-1 infection of macrophages, and single-cell RNA sequencing (scRNA-seq) to compare the transcriptomes of uninfected cells, cells harboring pre-integration complexes (PIC), and those containing integrated provirus and making late HIV proteins. scRNA-seq can distinguish between provirus and PIC cells because their background transcriptomes vary dramatically. PIC cell transcriptomes are characterized by NFkB and AP-1 promoted transcription, while transcriptomes of cells transcribing from provirus are characterized by E2F family transcription products. We also find that the transcriptomes of PIC cells and Bystander cells (defined as cells not producing any HIV transcript and thus presumably not infected) are indistinguishable except for the presence of HIV-1 transcripts. Furthermore, the presence of pathogen alters the transcriptome of the uninfected Bystander cells, so that they are distinguishable from true control cells (cells not exposed to any pathogen). Therefore, a single cell comparison of transcriptomes from provirus and PIC cells provides a new understanding of the transcriptional changes that accompany HIV-1 integration.


Assuntos
Infecções por HIV , HIV-1 , DNA Complementar , HIV-1/genética , Humanos , Macrófagos , Provírus/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-36589263

RESUMO

Macrophages are one of the main cellular targets of human immunodeficiency virus type 1 (HIV-1). Macrophage infection by HIV-1 is inefficient due to the presence of the viral restriction factor sterile alpha motif and histidine aspartic acid domain containing protein 1 (SAMHD1). Ex vivo human monocyte-derived macrophages (MDMs) express SAMHD1 in an equilibrium between active (unphosphorylated) and inactive (phosphorylated) states. We and others have shown that treatment of MDMs with the FDA-approved tyrosine kinase inhibitor, dasatinib, ablates SAMHD1 phosphorylation, thus skewing the balance towards a cellular state that is refractory to HIV-1 infection. We hypothesized that dasatinib inhibits a putative tyrosine kinase that is upstream of SAMHD1. In search for this tyrosine kinase, we probed several candidates and were unable to identify a single target that, when inhibited, was sufficient to explain the dephosphorylation of SAMHD1 we observe upon treatment with dasatinib. On the other hand, we probed the ability of dasatinib to directly inhibit the serine/threonine cyclin dependent kinases 1, 2, 4 and 6 and confirmed that dasatinib directly inhibits these kinases. Therefore, our results show that inhibition of the proximal CDKs 1, 2, 4 and 6 by dasatinib is clearly detectable, leads to blockade of infection by HIV-1, and may be sufficient to explain the activity of dasatinib against SAMHD1 phosphorylation.

14.
Biochem Pharmacol ; 195: 114844, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801521

RESUMO

Latency reversing agents (LRAs), such as protein kinase C (PKC) agonists, constitute a promising strategy for exposing and eliminating the HIV-1 latent reservoir. PKC agonists activate NF-κB and induce deleterious pro-inflammatory cytokine production. Adjuvant pharmacological agents, such as ruxolitinib, a JAK inhibitor, have previously been combined with LRAs to reduce deleterious pro-inflammatory cytokine secretion without inhibiting HIV-1 reactivation in vitro. Histone deacetylase inhibitors (HDACi) are known to dampen pro-inflammatory cytokine secretion in the context of other diseases and synergize with LRAs to reactivate latent HIV-1. This study investigates whether a panel of epigenetic modifiers, including HDACi, could dampen PKC-induced pro-inflammatory cytokine secretion during latency reversal. We screened an epigenetic modifier library for compounds that reduced intracellular IL-6 production induced by the PKC agonist Ingenol-3,20-dibenzoate. We further tested the most promising epigenetic inhibitor class, HDACi, for their ability to reduce pro-inflammatory cytokines and reactivate latent HIV-1 ex vivo. We identified nine epigenetic modulators that reduced PKC-induced intracellular IL-6. In cells from aviremic individuals living with HIV-1, the HDAC1-3 inhibitor, suberohydroxamic acid (SBHA), reduced secretion of pro-inflammatory cytokines TNF-α, IL-5, IL-2r, and IL-17 but did not significantly reactivate latent HIV-1 when combined with Ingenol-3,20-dibenzoate. Combining SBHA and Ingenol-3,20-dibenzoate reduces deleterious cytokine production during latency reversal but does not induce significant viral reactivation in aviremic donor PBMCs. The ability of SBHA to reduce PKC-induced pro-inflammatory cytokines when combined with Ingenol-3,20-dibenzoate suggests SBHA can be used to reduced PKC induced pro-inflammatory cytokines but not to achieve latency reversal in the context of HIV-1.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Citocinas/metabolismo , Diterpenos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Mediadores da Inflamação/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Proteína Quinase C/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-36742994

RESUMO

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

16.
Sci Rep ; 11(1): 24507, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969960

RESUMO

Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as 'NanoSpot.ai', is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , Testes Diagnósticos de Rotina/métodos , Testes de Hemaglutinação/métodos , Testes Imediatos , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Estudo de Prova de Conceito
17.
Front Immunol ; 12: 742631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616404

RESUMO

SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , COVID-19/imunologia , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/virologia , Estudos de Coortes , Estudos Transversais , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Espanha
18.
Front Immunol ; 12: 682182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194436

RESUMO

The mitochondrial antiviral signaling protein (MAVS) is part of the cell's innate immune mechanism of defense. MAVS mRNA is bicistronic and can give rise to a full length-MAVS and a shorter isoform termed miniMAVS. In response to viral infections, viral RNA can be sensed by the cytosolic RNA sensors retinoic acid-inducible gene I (RIG-I) and/or melanoma differentiation-associated protein 5 (MDA5) and activate NF-κB through interaction with MAVS. MAVS can also sense cellular stress and activate an anti-oxidative stress (AOS) response through the activation of NF-κB. Because NF-κB is a main cellular transcription factor for HIV-1, we wanted to address what role MAVS plays in HIV-1 reactivation from latency in CD4 T cells. Our results indicate that RIG-I agonists required full length-MAVS whereas the AOS response induced by Dynasore through its catechol group can reactivate latent HIV-1 in a MAVS dependent manner through miniMAVS isoform. Furthermore, we uncover that PKC agonists, a class of latency-reversing agents, induce an AOS response in CD4 T cells and require miniMAVS to fully reactivate latent HIV-1. Our results indicate that the AOS response, through miniMAVS, can induce HIV-1 transcription in response to cellular stress and targeting this pathway adds to the repertoire of approaches to reactivate latent HIV-1 in 'shock-and-kill' strategies.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas Mitocondriais/metabolismo , Ativação Viral , Latência Viral , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Ativação Viral/imunologia , Latência Viral/imunologia
19.
Res Sq ; 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34312614

RESUMO

Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test (HAT) that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization (EUA) demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as 'NanoSpot.ai', is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.

20.
Arch Pathol Lab Med ; 145(10): 1212-1220, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181714

RESUMO

CONTEXT.­: Emerging evidence shows correlation between the presence of neutralization antibodies (nAbs) and protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently available commercial serology assays lack the ability to specifically identify nAbs. An enzyme-linked immunosorbent assay-based nAb assay (GenScript cPass neutralization antibody assay) has recently received emergency use authorization from the Food and Drug Administration. OBJECTIVE.­: To evaluate the performance characteristics of this assay and compare and correlate it with the commercial assays that detect SARS-CoV-2-specific immunoglobulin G (IgG). DESIGN.­: Specimens from SARS-COV-2 infected patients (n = 124), healthy donors obtained prepandemic (n = 100), and patients with non-coronavirus disease 2019 (COVID-19) respiratory infections (n = 92) were analyzed using this assay. Samples with residual volume were also tested on 3 commercial serology platforms (Abbott, Euroimmun, Siemens). Twenty-eight randomly selected specimens from patients with COVID-19 and 10 healthy controls were subjected to a plaque reduction neutralization test. RESULTS.­: The cPass assay exhibited 96.1% (95% CI, 94.9%-97.3%) sensitivity (at >14 days post-positive PCR), 100% (95% CI, 98.0%-100.0%) specificity, and zero cross-reactivity for the presence of non-COVID-19 respiratory infections. When compared with the plaque reduction assay, 97.4% (95% CI, 96.2%-98.5%) qualitative agreement and a positive correlation (R2 = 0.76) was observed. Comparison of IgG signals from each of the commercial assays with the nAb results from plaque reduction neutralization test/cPass assays displayed greater than 94.7% qualitative agreement and correlations with R2 = 0.43/0.68 (Abbott), R2 = 0.57/0.85 (Euroimmun), and R2 = 0.39/0.63 (Siemens), respectively. CONCLUSIONS.­: The combined data support the use of cPass assay for accurate detection of the nAb response. Positive IgG results from commercial assays associated reasonably with nAbs presence and can serve as a substitute.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/virologia , Criança , Pré-Escolar , Estudos de Coortes , Epidemias/prevenção & controle , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...