Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 8(6): 210180, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34234954

RESUMO

If sexual signals are costly, covariance between signal expression and fitness is expected. Signal-fitness covariance is important, because it can contribute to the maintenance of genetic variation in signals that are under natural or sexual selection. Chemical signals, such as female sex pheromones in moths, have traditionally been assumed to be species-recognition signals, but their relationship with fitness is unclear. Here, we test whether chemical, conspecific mate finding signals covary with fitness in the moth Heliothis subflexa. Additionally, as moth signals are synthesized de novo every night, the maintenance of the signal can be costly. Therefore, we also hypothesized that fitness covaries with signal stability (i.e. lack of temporal intra-individual variation). We measured among- and within-individual variation in pheromone characteristics as well as fecundity, fertility and lifespan in two independent groups that differed in the time in between two pheromone samples. In both groups, we found fitness to be correlated with pheromone amount, composition and stability, supporting both our hypotheses. This study is, to our knowledge, the first to report a correlation between fitness and sex pheromone composition in moths, supporting evidence of condition-dependence and highlighting how signal-fitness covariance may contribute to heritable variation in chemical signals both among and within individuals.

2.
Proc Natl Acad Sci U S A ; 115(44): 11274-11279, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322931

RESUMO

The ability to feed on a wide range of diets has enabled insects to diversify and colonize specialized niches. Carrion, for example, is highly susceptible to microbial decomposers, but is kept palatable several days after an animal's death by carrion-feeding insects. Here we show that the burying beetle Nicrophorus vespilloides preserves carrion by preventing the microbial succession associated with carrion decomposition, thus ensuring a high-quality resource for their developing larvae. Beetle-tended carcasses showed no signs of degradation and hosted a microbial community containing the beetles' gut microbiota, including the yeast Yarrowia In contrast, untended carcasses showed visual and olfactory signs of putrefaction, and their microbial community consisted of endogenous and soil-originating microbial decomposers. This regulation of the carcass' bacterial and fungal community and transcriptomic profile was associated with lower concentrations of putrescine and cadaverine (toxic polyamines associated with carcass putrefaction) and altered levels of proteases, lipases, and free amino acids. Beetle-tended carcasses develop a biofilm-like matrix housing the yeast, which, when experimentally removed, leads to reduced larval growth. Thus, tended carcasses hosted a mutualistic microbial community that promotes optimal larval development, likely through symbiont-mediated extraintestinal digestion and detoxification of carrion nutrients. The adaptive preservation of carrion coordinated by the beetles and their symbionts demonstrates a specialized resource-management strategy through which insects modify their habitats to enhance fitness.


Assuntos
Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Microbiota/fisiologia , Animais , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cadaverina/metabolismo , Fungos/metabolismo , Putrescina/metabolismo , Transcriptoma/genética
3.
Front Plant Sci ; 7: 1880, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066452

RESUMO

Drosophila suzukii is threatening soft fruit production worldwide due to the females' ability to pierce through the intact skin of ripe fruits and lay eggs inside. Larval consumption and the associated microbial infection cause rapid fruit degradation, thus drastic yield and economic loss. Cultivars that limit the proliferation of flies may be ideal to counter this pest; however, they have not yet been developed or identified. To search for potential breeding material, we investigated the rate of adult D. suzukii emergence from individual fruits (fly emergence) of 107 accessions of Fragaria species that had been exposed to egg-laying D. suzukii females. We found significant variation in fly emergence across strawberries, which correlated with accession and fruit diameter, and to a lesser extent with the strawberry species background. We identified accessions with significantly reduced fly emergence, not explained by their fruit diameter. These accessions constitute valuable breeding material for strawberry cultivars that limit D. suzukii spread.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA