Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(48): 16267-16279, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32928959

RESUMO

Punctin/MADD-4, a member of the ADAMTSL extracellular matrix protein family, was identified as an anterograde synaptic organizer in the nematode Caenorhabditis elegans. At GABAergic neuromuscular junctions, the short isoform MADD-4B binds the ectodomain of neuroligin NLG-1, itself a postsynaptic organizer of inhibitory synapses. To identify the molecular bases of their partnership, we generated recombinant forms of the two proteins and carried out a comprehensive biochemical and biophysical study of their interaction, complemented by an in vivo localization study. We show that spontaneous proteolysis of MADD-4B first generates a shorter N-MADD-4B form, which comprises four thrombospondin (TSP) domains and one Ig-like domain and binds NLG-1. A second processing event eliminates the C-terminal Ig-like domain along with the ability of N-MADD-4B to bind NLG-1. These data identify the Ig-like domain as the primary determinant for N-MADD-4B interaction with NLG-1 in vitro We further demonstrate in vivo that this Ig-like domain is essential, albeit not sufficient per se, for efficient recruitment of GABAA receptors at GABAergic synapses in C. elegans The interaction of N-MADD-4B with NLG-1 is also disrupted by heparin, used as a surrogate for the extracellular matrix component, heparan sulfate. High-affinity binding of heparin/heparan sulfate to the Ig-like domain may proceed from surface charge complementarity, as suggested by homology three-dimensional modeling. These data point to N-MADD-4B processing and cell-surface proteoglycan binding as two possible mechanisms to regulate the interaction between MADD-4B and NLG-1 at GABAergic synapses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Sinapses/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular Neuronais/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Domínios Proteicos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sinapses/genética
2.
Angew Chem Int Ed Engl ; 56(30): 8697-8700, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28504850

RESUMO

Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic-level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4 (S-Cys)4 ] intermediates leading to [Cu4 (S-Cys)5 ]- , [Cu4 (S-Cys)6 ]2- , and [Cu4 (S-Cys)5 (O-Asn)]- clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Proteínas de Choque Térmico/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Arabidopsis/química , Complexos de Coordenação/química , Cobre/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Compostos de Sulfidrila/química
3.
Sci Rep ; 6: 39065, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991525

RESUMO

Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1-2) × 1017 M-1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Methylosinus trichosporium/metabolismo , Bacillus subtilis/efeitos dos fármacos , Sítios de Ligação , Cobre/toxicidade , Cristalografia por Raios X , Citosol/química , Citosol/metabolismo , Expressão Gênica , Methylosinus trichosporium/efeitos dos fármacos , Modelos Moleculares , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína
4.
Nature ; 525(7567): 140-3, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26308900

RESUMO

Methane-oxidizing bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase. Certain methanotrophs are also able to switch to using the iron-containing soluble methane monooxygenase to catalyse methane oxidation, with this switchover regulated by copper. Methane monooxygenases are nature's primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and methane monooxygenases have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. Here we discover and characterize a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for particulate methane monooxygenase. Csp1 is a tetramer of four-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realized. Cytosolic homologues of Csp1 are present in diverse bacteria, thus challenging the dogma that such organisms do not use copper in this location.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Metano/metabolismo , Methylosinus trichosporium/química , Motivos de Aminoácidos , Cristalografia por Raios X , Citosol/metabolismo , Metano/química , Methylosinus trichosporium/enzimologia , Modelos Moleculares , Oxirredução , Oxigenases/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...