Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Neurosci Methods ; 397: 109940, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544382

RESUMO

BACKGROUND: ANY-Maze and EthoVision XT are two commonly used automated animal tracking systems employed to produce reliable and consistent results in behavioural paradigms. Data obtained with both tracking systems have presented differences, particularly when varying laboratory lighting conditions and contrasts of mice coat colour against the arena background in both water maze and tunnel maze. METHOD: In this study, two fluorescent lighting conditions (58 and 295 lux), local to our laboratory, and different coat-coloured mouse lines (C57BL/6 J - black; CD1 - agouti; C3H/HeN - white) were used to compare reproducibility in measures of tracking systems (ANY-Maze versus EthoVision) in the open field test. RESULTS: Differences between systems were reliant on the contrasts between coat and background colours. Surprisingly, black animals presented the greatest differences in read-outs between tracking systems, regardless of lighting conditions. Data from both video observation tools differed mainly in exploration-related parameters (distance travelled), but less in more static proxies (time in thigmotaxis zone). Overall, EthoVision XT returned higher values for most parameters analysed relative to ANY-Maze. More inconsistencies in recording and analysis can be expected from other video recording systems. CONCLUSION: Data analysis software provides an additional source of variation in need of consideration when reproducibility in behavioural neuroscience is required.


Assuntos
Comportamento Animal , Teste de Campo Aberto , Camundongos , Animais , Reprodutibilidade dos Testes , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Gravação em Vídeo/métodos
2.
PLoS One ; 18(8): e0289472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531359

RESUMO

In recent years, insufficiently characterised controls have been a contributing factor to irreproducibility in biomedical research including neuroscience and metabolism. There is now a growing awareness of phenotypic differences between the C57BL/6 substrains which are commonly used as control animals. We here investigated baseline metabolic characteristics such as glucose regulation, fasted serum insulin levels and hepatic insulin signalling in five different C57BL/6 substrains (N, J, JOla, JRcc) of both sexes, obtained from two commercial vendors, Charles River Laboratories (Crl) and Envigo (Env). Our results indicate systematic and tissue-specific differences between substrains, affected by both vendor and sex, in all parameters investigated, and not necessarily mediated by the presence of the NntC57BL/6J mutation. Not only were there differences between 6J and 6N as expected, all three 6J substrains exhibited different profiles, even from the same breeder. Two distinct metabolic profiles were identified, one in which low insulin levels resulted in impaired glucose clearance (6JCrl; both sexes) and the other, where sustained elevations in fasted basal insulin levels led to glucose intolerance (male 6JRccEnv). Further, 6JRccEnv displayed sex differences in both glucose clearance and hepatic insulin signalling markers. In comparison, the two 6N substrains of either sex, irrespective of vendor, did not exhibit considerable differences, with 6NCrl animals presenting a good choice as a healthy baseline 'control' for many types of experiments. Overall, our data emphasise the importance of selecting and characterising control subjects regarding background, sex, and supplier to ensure proper experimental outcomes in biomedical research.


Assuntos
Glucose , Insulina , Animais , Masculino , Feminino , Camundongos , Fenótipo , Insulina/genética , Camundongos Endogâmicos C57BL
3.
J Neurochem ; 164(2): 121-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184945

RESUMO

Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.


Assuntos
Doença de Parkinson , Camundongos , Animais , Humanos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Dopamina , Modelos Animais de Doenças , Hipercinese , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 12(1): 3179, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210444

RESUMO

Electrophysiological recordings in animals constitute frequently applied techniques to study neuronal function. In this context, several authors described tethered recordings as a semi-restraint situation with negative implications for animal welfare and suggested radiotelemetric setups as a refinement measure. Thus, we here investigated the hypothesis that tethered recordings exert measurable effects on behavioral and sleep patterns in Sprague-Dawley rats. Animals were kept in monitoring glass cages either with or without a head connection to a recording cable. Saccharin preference, nest building, serum corticosterone and fecal corticosterone metabolite levels were in a comparable range in both groups. The proportion of vigilance states was not affected by the cable connection. Minor group differences were detected in bout lengths distributions, with a trend for longer NREM and WAKE stages in animals with a cable connection. However, a relevant effect was not further confirmed by an analysis of the number of sleep/wake and wake/sleep transitions. The analysis of activity levels did not reveal group differences. However, prolonged exposure to the tethered condition resulted in an intra-group increase of activity. In conclusion, the comparison between freely moving vs tethered rats did not reveal major group differences. Our findings indicate that telemetric recordings only offer small advantages vs cabled set ups, though this may differ in other experimental studies where for example anxiety- or drug-induced effects are analyzed.


Assuntos
Comportamento Animal , Eletroencefalografia/efeitos adversos , Sono , Telemetria/efeitos adversos , Vigília , Bem-Estar do Animal , Animais , Encéfalo/fisiologia , Eletrodos Implantados , Eletroencefalografia/métodos , Feminino , Ratos , Ratos Sprague-Dawley , Telemetria/métodos
5.
Nutr Neurosci ; 25(4): 719-736, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32862802

RESUMO

Objective: The ß-site APP-cleaving enzyme 1 (BACE1) is a rate-limiting step in ß-amyloid (Aß) production in Alzheimer's disease (AD) brains, but recent evidence suggests that BACE1 is also involved in metabolic regulation. Here, we aimed to assess the effects of highfat diet (HFD) on metabolic and cognitive phenotypes in the diabetic BACE1 knock-in mice (PLB4) and WT controls; we additionally examined whether these phenotypes can be normalized with a synthetic retinoid (Fenretinide, Fen) targeting weight loss.Methods: Five-month old male WT and PLB4 mice were fed either (1) control chow diet, (2) 45%-saturated fat diet (HFD), (3) HFD with 0.04% Fen (HFD + Fen) or (4) control chow diet with 0.04% Fen (Fen) for 10 weeks. We assessed basic metabolic parameters, circadian rhythmicity, spatial habituation (Phenotyper) and working memory (Y-maze). Hypothalami, forebrain and liver tissues were assessed using Western blots, qPCR and ELISAs.Results: HFD feeding drastically worsened metabolism and induced early mortality (-40%) in otherwise viable PLB4 mice. This was ameliorated by Fen, despite no effects on glucose intolerance. In HFD-fed WT mice, Fen reduced weight gain, glucose intolerance and hepatic steatosis. The physiological changes induced in WT and PLB4 mice by HFD (+/-Fen) were accompanied by enhanced cerebral astrogliosis, elevated PTP1B, phopsho-eIF2α and altered hypothalamic transcription of Bace1, Pomc and Mc4r. Behaviourally, HFD feeding exacerbated spatial memory deficits in PLB4 mice, which was prevented by Fen and linked with increased full-length APP, normalized brain Aß*56 oligomerization and astrogliosis.Conclusions: HFD induces early mortality and worsened cognition in the Alzheimer's-like BACE1 mice- partial prevention was achieved with Fenretinide, without improvements in glucose homeostasis.


Assuntos
Doença de Alzheimer , Fenretinida , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Cognição , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
J Alzheimers Dis ; 85(2): 755-778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34864660

RESUMO

BACKGROUND: The prevalence of Alzheimer's disease (AD) is greater in women compared to men, but the reasons for this remain unknown. This sex difference has been widely neglected in experimental studies using transgenic mouse models of AD. OBJECTIVE: Here, we studied behavior and molecular pathology of 5-month-old 5XFAD mice, which express mutated human amyloid precursor protein and presenilin-1 on a C57BL/6J background, versus their wild-type littermate controls, to compare both sex- and genotype-dependent differences. METHODS: A novel behavioral paradigm was utilized (OF-NO-SI), comprising activity measures (Open Field, OF) arena, followed by Novel Object exploration (NO) and Social Interaction (SI) of a sex-matched conspecific. Each segment consisted of two repeated trials to assess between-trial habituation. Subsequently, brain pathology (amyloid load, stress response and inflammation markers, synaptic integrity, trophic support) was assessed using qPCR and western blotting. RESULTS: Female 5XFAD mice had higher levels of human APP and amyloid-ß and heightened inflammation versus males. These markers correlated with hyperactivity observed in both sexes, yet only female 5XFAD mice presented with subtle deficits in object and social exploration. Male animals had higher expression of stress markers and neurotrophic factors irrespective of genotype, this correlated with cognitive performance. CONCLUSION: The impact of sex on AD-relevant phenotypes is in line with human data and emphasizes the necessity of appropriate study design and reporting. Differential molecular profiles observed in male versus female mice offer insights into possible protective mechanisms, and hence treatment strategies.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Patologia Molecular/métodos , Caracteres Sexuais , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Presenilina-1/genética , Presenilina-1/metabolismo
7.
Aging Brain ; 2: 100055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908879

RESUMO

The canonical role of Apolipoprotein E (ApoE) is related to lipid and cholesterol metabolism, however, additional functions of this protein have not been fully described. Given the association of ApoE with diseases such as Alzheimer's Disease (AD), it is clear that further characterisation of its roles, especially within the brain, is needed. Therefore, using protein and gene expression analyses of neonatal and 6-month old brain tissues from an ApoE knockout mouse model, we examined ApoE's contribution to several CNS pathways, with an emphasis on those linked to AD. Early neonatal changes associated with ApoE-/- were observed, with decreased soluble phosphorylated tau (p-tau, -40 %), increased synaptophysin (+36 %) and microglial Iba1 protein levels (+25 %) vs controls. Progression of the phenotype was evident upon analysis of 6-month-old tissue, where decreased p-tau was also confirmed in the insoluble fraction, alongside reduced synaptic and increased amyloid precursor protein (APP) protein levels. An age comparison further underlined deviations from WT animals and thus the impact of ApoE loss on neuronal maturation. Taken together, our data implicate ApoE modulation of multiple CNS roles. Loss of function is associated with alterations from birth, and include synaptic deficits, neuroinflammation, and changes to key AD pathologies, amyloid-ß and tau.

8.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166149, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892080

RESUMO

AIM: The ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) has been identified as the central initiator of amyloid ß (Aß) generation in the brain, the key hallmark of Alzheimer's disease (AD). However, recent studies provided evidence that BACE1 also plays a crucial role in metabolic regulation, and we have shown that neuronal human BACE1 knock-in mice (PLB4) display type 2 diabetes mellitus (T2DM)-like symptoms alongside AD-like impairments. Hence, we here investigated if targeted BACE1 inhibition using LY2886721, an active site BACE1 inhibitor, would improve glucose homeostasis, insulin sensitivity and motor performance in PLB4 mice. MATERIALS AND METHODS: LY2886721 was administered as a dietary supplement (0.02% wt/wt) for six consecutive weeks. Physiological, metabolic and motor assessments were performed during the last two weeks of treatment, followed by molecular tissue analyses post-mortem. RESULTS: LY2886721 treatment improved glucose homeostasis and hepatic gluconeogenesis in diabetic PLB4 mice, as determined by improvements in basal glucose and glucose/pyruvate tolerance tests. Furthermore, LY2886721 improved hepatic insulin sensitivity, as indicated by enhanced basal hyperphosphorylation of insulin receptors. In PLB4 brains, we detected altered basal conditions of APP expression and processing, with beneficial effects on APP processing achieved by LY2886721 treatment. No improvements in motor coordination were found. CONCLUSIONS: Our data provide support for a role of BACE1 as a regulator of systemic glucose homeostasis and suggest BACE1 inhibitors for the treatment of T2DM-associated pathologies, especially in cases where diabetes is comorbid to AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Técnicas de Introdução de Genes/métodos , Fenótipo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Encéfalo/patologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ácidos Picolínicos/farmacologia
9.
J Biol Chem ; 296: 100292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453282

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron, and zinc. In AD, a distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau may alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe, and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared with those for the corresponding age- and sex-matched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than did those from the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain and serum of L66 mice compared with WT. For 5xFAD mice, Zn exhibited a trend toward a lighter isotopic composition in the brain and a heavier isotopic composition in serum compared with WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition may serve as a marker for proteinopathies underlying AD and other types of dementia.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Cobre/metabolismo , Ferro/metabolismo , Presenilina-1/genética , Zinco/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fosforilação , Presenilina-1/metabolismo , Agregados Proteicos/genética , Espectrofotometria Atômica , Transgenes , Proteínas tau/metabolismo
10.
Front Aging Neurosci ; 13: 788519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095472

RESUMO

Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-ß (Aß) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aß removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aß. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.

11.
Proc Nutr Soc ; 80(2): 126-138, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33138875

RESUMO

Life expectancy in most developed countries has been rising over the past century. In the UK alone, there are about 12 million people over 65 years old and centenarians have increased by 85% in the past 15 years. As a result of the ageing population, which is due mainly to improvements in medical treatments, public health, improved housing and lifestyle choices, there is an associated increase in the prevalence of pathological conditions, such as metabolic disorders, type 2 diabetes, cardiovascular and neurodegenerative diseases, many types of cancer and others. Statistics suggest that nearly 54% of elderly people in the UK live with at least two chronic conditions, revealing the urgency for identifying interventions that can prevent and/or treat such disorders. Non-pharmacological, dietary interventions such as energetic restriction (ER) and methionine restriction (MR) have revealed promising outcomes in increasing longevity and preventing and/or reversing the development of ageing-associated disorders. In this review, we discuss the evidence and mechanisms that are involved in these processes. Fibroblast growth factor 1 and hydrogen sulphide are important molecules involved in the effects of ER and MR in the extension of life span. Their role is also associated with the prevention of metabolic and cognitive disorders, highlighting these interventions as promising modulators for improvement of health span.


Assuntos
Diabetes Mellitus Tipo 2 , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Cognição , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Expectativa de Vida , Longevidade
12.
Neuropharmacology ; 180: 108305, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931815

RESUMO

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated as a crucial component in both neurodegeneration and diabetes. However, the role of metabolic signalling pathways and the NLRP3 inflammasome in frontotemporal dementia remain largely elusive. We therefore investigated the effects of an NLRP3 inhibitor (MCC950) in a murine tau knock-in (PLB2TAU) model vs. wild-type (PLBWT) control mice. In male PLB2TAU mice (4 months at start of study), MCC950 treatment (20 mg/kg, for 12 weeks) improved insulin sensitivity and reduced circulating plasma insulin levels. Further molecular analysis suggested normalisation in insulin signalling pathways in both liver and muscle tissue. Treatment also resulted in improvements in inflammation and ER stress signalling, both peripherally and centrally, alongside a partial normalisation of phospho-tau levels. Overall, we provide evidence that MCC950 improved metabolic, inflammatory and frontotemporal dementia (FTD) relevant phenotypes in multiple tissues. NLRP3 inhibition may therefore offer a therapeutic approach to ameliorate FTD pathology.


Assuntos
Modelos Animais de Doenças , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/metabolismo , Furanos/uso terapêutico , Indenos/uso terapêutico , Resistência à Insulina/fisiologia , Receptores de Superfície Celular/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Animais , Demência Frontotemporal/genética , Furanos/farmacologia , Humanos , Indenos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Sulfonamidas/farmacologia , Proteínas tau/biossíntese , Proteínas tau/genética
13.
Lipids Health Dis ; 19(1): 201, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867761

RESUMO

BACKGROUND: Lipid dysregulation is associated with several key characteristics of Alzheimer's disease (AD), including amyloid-ß and tau neuropathology, neurodegeneration, glucose hypometabolism, as well as synaptic and mitochondrial dysfunction. The ß-site amyloid precursor protein cleavage enzyme 1 (BACE1) is associated with increased amyloidogenesis, and has been affiliated with diabetes via its role in metabolic regulation. METHODS: The research presented herein investigates the role of hBACE1 in lipid metabolism and whether specific brain regions show increased vulnerability to lipid dysregulation. By utilising advanced mass spectrometry techniques, a comprehensive, quantitative lipidomics analysis was performed to investigate the phospholipid, sterol, and fatty acid profiles of the brain from the well-known PLB4 hBACE1 knock-in mouse model of AD, which also shows a diabetic phenotype, to provide insight into regional alterations in lipid metabolism. RESULTS: Results show extensive region - specific lipid alterations in the PLB4 brain compared to the wild-type, with decreases in the phosphatidylethanolamine content of the cortex and triacylglycerol content of the hippocampus and hypothalamus, but increases in the phosphatidylcholine, phosphatidylinositol, and diacylglycerol content of the hippocampus. Several sterol and fatty acids were also specifically decreased in the PLB4 hippocampus. CONCLUSION: Collectively, the lipid alterations observed in the PLB4 hBACE1 knock-in AD mouse model highlights the regional vulnerability of the brain, in particular the hippocampus and hypothalamus, to lipid dysregulation, hence supports the premise that metabolic abnormalities have a central role in both AD and diabetes.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Hipocampo/patologia , Humanos , Hipotálamo/patologia , Lipidômica/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Esteróis/metabolismo , Transgenes
14.
Behav Pharmacol ; 31(7): 652-670, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32649364

RESUMO

Novel object and social interaction tasks allow assessments of rodent cognition and social behavior. Here, we combined these tasks and defined unequivocal locations of interest. Our procedure, termed OF-NO-SI, comprised habituation to the open field (OF), novel object (NO) and social interaction (SI) stages. Habituation was measured within- and between-trials (10 minutes each, two per stage). Ambulation emerged as the appropriate proxy during the OF stage, but NO and SI trials were best quantified via direct exploration measures. We pharmacologically validated the paradigm using 5-month old C57BL/6J male mice, treated intraperitoneally with (1) 0.5 mg/kg scopolamine, (2) 0.05 mg/kg MK-801 and (3) 0.05 mg/kg SCH-23390 to block muscarinic (M1), NMDA, and D1 receptors, respectively, or (4) vehicle (distilled water). Activity and gross exploratory behavior were affected by all compounds cf. vehicle: scopolamine and MK-801 cohorts were hyperactive, while SCH-23390 caused hypo-locomotion throughout. Vehicle treated mice showed reliable habituation to all stages for time in interaction zone, directed exploration and number of visits. Exploration was severely impaired by scopolamine. MK-801 mostly affected within-session exploration but also increased exploration of the conspecific compared to the object. Interestingly, even though within-trial habituation was lacking in the SCH-23390 cohort, between-trial habituation was largely intact, despite reduced locomotion. Our data suggest that the OF-NO-SI task is a convenient and robust paradigm to measure habituation to different experimental settings and stimuli. It allows the dissociation of proxies related to activity and non-associative learning/memory, as revealed by distinct pharmacological treatment effects within- vs. between-trials.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Habituação Psicofisiológica/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Benzazepinas/farmacologia , Maleato de Dizocilpina/farmacologia , Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos/farmacologia , Escopolamina/farmacologia , Interação Social/efeitos dos fármacos
15.
Mol Neurobiol ; 57(8): 3258-3272, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32514860

RESUMO

The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-ß (Aß) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3-4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aß and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aß. Notably, GFAP also correlated strongly with Aß markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aß pathology, and cognitive impairment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Estresse do Retículo Endoplasmático/fisiologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Inflamação/patologia , Masculino
16.
AIMS Neurosci ; 7(1): 1-16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32455162

RESUMO

Delirium is an under-diagnosed yet frequently occurring clinical complication with potentially serious consequences for intensive care unit (ICU) patients. Diagnosis is currently reactive and based upon qualitative assessment of the patient's cognitive status by ICU staff. Here, we conducted a preliminary investigation into whether emerging quantitative electroencephalography (QEEG) analysis techniques can accurately discriminate between delirious and non-delirious patients in an ICU setting. Resting EEG recordings from 5 ICU patients in a state of delirium and 5 age matched control patients were analyzed using autoregressive spectral estimation for quantification of EEG power and renormalized partial directed coherence for analysis of directed functional connectivity. Delirious subjects exhibited pronounced EEG slowing as well as severe general loss of directed functional connectivity between recording sites. Distinction between groups based on these parameters was surprisingly clear given the low sample size employed. Furthermore, by targeting the electrode positions where effects were most apparent it was possible to clearly segregate patients using only 3 scalp electrodes. These findings indicate that quantitative diagnosis and monitoring of delirium is not only possible using emerging QEEG methods but is also accomplishable using very low-density electrode systems.

17.
J Cereb Blood Flow Metab ; 40(7): 1402-1414, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32151228

RESUMO

Assessment of outcome in preclinical studies of vascular cognitive impairment (VCI) is heterogenous. Through an ARUK Scottish Network supported questionnaire and workshop (mostly UK-based researchers), we aimed to determine underlying variability and what could be implemented to overcome identified challenges. Twelve UK VCI research centres were identified and invited to complete a questionnaire and attend a one-day workshop. Questionnaire responses demonstrated agreement that outcome assessments in VCI preclinical research vary by group and even those common across groups, may be performed differently. From the workshop, six themes were discussed: issues with preclinical models, reasons for choosing functional assessments, issues in interpretation of functional assessments, describing and reporting functional outcome assessments, sharing resources and expertise, and standardization of outcomes. Eight consensus points emerged demonstrating broadly that the chosen assessment should reflect the deficit being measured, and therefore that one assessment does not suit all models; guidance/standardisation on recording VCI outcome reporting is needed and that uniformity would be aided by a platform to share expertise, material, protocols and procedures thus reducing heterogeneity and so increasing potential for collaboration, comparison and replication. As a result of the workshop, UK wide consensus statements were agreed and future priorities for preclinical research identified.


Assuntos
Demência Vascular , Modelos Animais de Doenças , Projetos de Pesquisa/normas , Animais , Consenso , Recuperação de Função Fisiológica , Inquéritos e Questionários , Reino Unido
18.
Mol Neurobiol ; 57(1): 539-550, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31396860

RESUMO

Diabetes and obesity have been implicated as risk factors for dementia. However, metabolic mechanisms and associated signalling pathways have not been investigated in detail in frontotemporal dementia. We therefore here characterised physiological, behavioural and molecular phenotypes of 3- and 8-month-old male tau knock-in (PLB2TAU) vs wild-type (PLBWT) mice. Homecage analysis suggested intact habituation but a dramatic reduction in exploratory activity in PLB2TAU mice. Deficits in motor strength were also observed. At 3 months, PLB2TAU mice displayed normal glucose handling but developed hyperglycaemia at 8 months, suggesting a progressive diabetic phenotype. Brain, liver and muscle tissue analyses confirmed tissue-specific deregulation of metabolic and homeostatic pathways. In brain, increased levels of phosphorylated tau and inflammation were detected alongside reduced ER regulatory markers, overall suggesting a downregulation in essential cellular defence pathways. We suggest that subtle neuronal expression of mutated human tau is sufficient to disturb systems metabolism and protein handling. Whether respective dysfunctions in tauopathy patients are also a consequence of tau pathology remains to be confirmed, but could offer new avenues for therapeutic interventions.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Técnicas de Introdução de Genes , Inflamação/patologia , Resistência à Insulina , Mutação/genética , Proteostase , Proteínas tau/genética , Envelhecimento/patologia , Animais , Comportamento Animal , Biomarcadores/metabolismo , Peso Corporal , Encéfalo/patologia , Ritmo Circadiano , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Habituação Psicofisiológica , Humanos , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Fenótipo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Proteínas tau/metabolismo
19.
J Alzheimers Dis ; 73(3): 935-954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884477

RESUMO

Retinoic acid has been previously proposed in the treatment of Alzheimer's disease (AD). Here, five transgenic mouse models expressing AD and frontotemporal dementia risk genes (i.e., PLB2APP, PLB2TAU, PLB1Double, PLB1Triple, and PLB4) were used to investigate if consistent alterations exist in multiple elements of the retinoic acid signaling pathway in these models. Many steps of the retinoic acid signaling pathway including binding proteins and metabolic enzymes decline, while the previously reported increase in RBP4 was only consistent at late (6 months) but not early (3 month) ages. The retinoic acid receptors were exceptional in their consistent decline in mRNA and protein with transcript decline of retinoic acid receptors ß and γ by 3 months, before significant pathology, suggesting involvement in early stages of disease. Decline in RBP1 transcript may also be an early but not late marker of disease. The decline in the retinoic acid signaling system may therefore be a therapeutic target for AD and frontotemporal dementia. Thus, novel stable retinoic acid receptor modulators (RAR-Ms) activating multiple genomic and non-genomic pathways were probed for therapeutic control of gene expression in rat primary hippocampal and cortical cultures. RAR-Ms promoted the non-amyloidogenic pathway, repressed lipopolysaccharide induced inflammatory genes and induced genes with neurotrophic action. RAR-Ms had diverse effects on gene expression allowing particular RAR-Ms to be selected for maximal therapeutic effect. Overall the results demonstrated the early decline of retinoic acid signaling in AD and frontotemporal dementia models and the activity of stable and potent alternatives to retinoic acid as potential therapeutics.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Receptores do Ácido Retinoico/agonistas , Tretinoína/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tretinoína/metabolismo
20.
IEEE Trans Biomed Circuits Syst ; 13(5): 1101-1111, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425050

RESUMO

Rodent electroencephalography (EEG) in preclinical research is frequently conducted in behaving animals. However, the difficulty inherent in identifying EEG epochs associated with a particular behavior or cue is a significant obstacle to more efficient analysis. In this paper we highlight a new solution, using infrared event stamping to accurately synchronize EEG, recorded from superficial sites above the hippocampus and prefrontal cortex, with video motion tracking data in a transgenic Alzheimer's disease (AD) mouse model. Epochs capturing specific behaviors were automatically identified and extracted prior to further analysis. This was achieved by the novel design of an ultra-miniature wearable EEG recorder, the NAT-1 device, and its in-situ IR recording module. The device is described in detail, and its contribution to enabling new neuroscience is demonstrated.


Assuntos
Doença de Alzheimer/fisiopatologia , Eletroencefalografia/instrumentação , Hipocampo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...