Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 37(5): 1597-1608, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435610

RESUMO

Cholecalciferol deficiency has been associated with stress-related psychiatric disorders, particularly depression. Therefore, the present study investigated the antidepressant-like effect of cholecalciferol in female mice and the possible role of the serotonergic system in this response. The ability of cholecalciferol to elicit an antidepressant-like effect and to modulate serotonin levels in the hippocampus and prefrontal cortex of mice subjected to chronic unpredictable stress (CUS) was also investigated. The administration of cholecalciferol (2.5, 7.5, and 25 µg/kg, p.o.) for 7 days, similar to fluoxetine (10 mg/kg, p.o., serotonin reuptake inhibitor), reduced the immobility time in the tail suspension test, without altering the locomotor performance in the open-field test. Moreover, the administration of p-chlorophenylalanine methyl ester (PCPA - 100 mg/kg, i.p., for 4 days, a selective inhibitor of tryptophan hydroxylase, involved in the serotonin synthesis) abolished the antidepressant-like effect of cholecalciferol and fluoxetine in the tail suspension test, demonstrating the involvement of serotonergic system. Additionally, CUS protocol (21 days) induced depressive-like behavior in the tail suspension test and decreased serotonin levels in the prefrontal cortex and hippocampus of mice. Conversely, the administration of cholecalciferol and fluoxetine in the last 7 days of CUS protocol completely abolished the stress-induced depressive-like phenotype. Cholecalciferol was also effective to abrogate CUS-induced reduction on serotonin levels in the prefrontal cortex, but not in the hippocampus. Our results indicate that cholecalciferol has an antidepressant-like effect in mice by modulating the serotonergic system and support the assumption that cholecalciferol may have beneficial effects for the management of depression.


Assuntos
Fluoxetina , Serotonina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Depressão/tratamento farmacológico , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Elevação dos Membros Posteriores/psicologia , Humanos , Camundongos , Transmissão Sináptica
2.
Purinergic Signal ; 17(2): 285-301, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33712981

RESUMO

Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Guanosina/farmacologia , Glicoproteínas de Membrana/efeitos dos fármacos , Proteínas Tirosina Quinases/efeitos dos fármacos , Receptores de AMPA/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Canais de Cálcio/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Glicoproteínas de Membrana/biossíntese , Camundongos , Neurogênese/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Tirosina Quinases/biossíntese , Sinapses/efeitos dos fármacos
3.
Behav Pharmacol ; 32(2&3): 170-181, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079735

RESUMO

Glibenclamide is a second-generation sulfonylurea used in the treatment of Type 2 Diabetes Mellitus. The primary target of glibenclamide is ATP-sensitive potassium channels inhibition; however, other possible targets include the control of inflammation and blood-brain barrier permeability, which makes this compound potentially interesting for the management of brain-related disorders. Here, we showed that systemic treatment with glibenclamide (5 mg/kg, p.o., for 21 days) could prevent the behavioral despair and the cognitive dysfunction induced by chronic unpredictable stress (CUS) in mice. In nonhypoglycemic doses, glibenclamide attenuated the stress-induced weight loss, decreased adrenal weight, and prevented the increase in glucocorticoid receptors in the prefrontal cortex, suggesting an impact in hypothalamic-pituitary-adrenal (HPA) axis function. Additionally, we did not observe changes in Iba-1, NLRP3 and caspase-1 levels in the prefrontal cortex or hippocampus after CUS or glibenclamide treatment. Thus, this study suggests that chronic treatment with glibenclamide prevents the emotional and cognitive effects of chronic stress in female mice. On the other hand, the control of neuroinflammation and NLRP3 inflammasome pathway is not the major mechanism mediating these effects. The behavioral effects might be mediated, in part, by the normalization of glucocorticoid receptors and HPA axis.


Assuntos
Depressão/tratamento farmacológico , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/psicologia , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Transtornos da Memória/tratamento farmacológico , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/psicologia
4.
Pharmacol Biochem Behav ; 198: 173020, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861641

RESUMO

AZD6765 (lanicemine) is a non-competitive NMDA receptor antagonist that induces a fast-acting antidepressant effect without presenting psychotomimetic effects. However, the mechanisms underlying its effects remain to be established. In this context, we demonstrated that a single administration of AZD6765 (1 mg/kg, i.p.) was able to induce an antidepressant-like effect in mice submitted to tail suspension test (TST), an effect reversed by LY294002 (a reversible PI3K inhibitor, 10 nmol/site, i.c.v.), wortmannin (an irreversible PI3K inhibitor, 0.1 µg/site, i.c.v.) and rapamycin (a selective mTOR inhibitor, 0.2 nmol/site, i.c.v.). In addition, the administration of sub-effective doses of AZD6765 (0.1 mg/kg, i.p.) in combination with lithium chloride (non-selective GSK-3ß inhibitor, 10 mg/kg, p.o.) or AR-A014418 (selective GSK-3ß inhibitor, (0.01 µg/site, i.c.v.) caused a synergistic antidepressant-like effect. These results suggest the involvement of PI3K/Akt/mTOR/GSK3ß signaling in the AZD6765 antidepressant-like effect. In addition, western blotting analysis showed an increased immunocontent of synapsin in the prefrontal cortex and a tendency to an increased immunocontent of this protein in the hippocampus 30 min after AZD6765 administration, but no significant effect of AZD6765 was observed in P70S6K (Thr389) phosphorylation and GluA1 immunocontent. A single dose of AZD6765 (3 mg/kg, i.p.), similarly to ketamine (1 mg/kg, i.p.), decreased the latency to feed in the novelty suppressed feeding (NSF) test, a behavioral paradigm that evaluates depression/anxiety-related behavior. This effect was reversed by rapamycin administration, suggesting the activation of mTOR signaling in the effect of AZD in the NSF test. In addition, a single administration of AZD6765 (1 mg/kg, i.p.) or ketamine (1 mg/kg, i.p.) reversed the depressive-like behavior induced by chronic unpredictable stress (CUS). Altogether, the results provide evidence for the fast-acting antidepressant profile of AZD6765, by a mechanism likely dependent on PI3K/Akt/mTOR/GSK3ß.


Assuntos
Antidepressivos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Fenetilaminas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Combinação de Medicamentos , Feminino , Elevação dos Membros Posteriores/métodos , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Cloreto de Lítio/farmacologia , Camundongos , Teste de Campo Aberto , Fenetilaminas/administração & dosagem , Fosforilação/efeitos dos fármacos , Piridinas/administração & dosagem , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Tiazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
5.
Pharmacol Biochem Behav ; 196: 172971, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32585162

RESUMO

Several attempts have been made to understand the role of cholecalciferol (vitamin D3) in the modulation of neuropsychiatric disorders. Notably, the deficiency of vitamin D3 is considered a pandemic and has been postulated to enhance the risk of major depressive disorder (MDD). Therefore, this study aims to investigate the antidepressant-like effect of cholecalciferol in a mouse model of depression induced by corticosterone, and the possible role of glucocorticoid receptors (GR), NLRP3 and autophagic pathways in this effect. Corticosterone administration (20 mg/kg, p.o., for 21 days) significantly increased the immobility time and grooming latency, as well as reduced the total time spent grooming in mice subjected to the tail suspension test (TST) and splash test (ST), respectively. Importantly, these behavioral alterations were associated with reduced GR immunocontent in the hippocampus of mice. Conversely, the repeated administration of cholecalciferol (2.5 µg/kg, p.o.) in the last 7 days of corticosterone administration was effective to prevent the increased immobility time in the TST and the reduced time spent grooming in the ST, and partially abolished the increase in the grooming latency induced by corticosterone, suggesting its antidepressant-like effect. These behavioral effects were similar to those exerted by fluoxetine (10 mg/kg, p.o.). Moreover, the corticosterone-induced reduction on hippocampal GR immunocontent was not observed in mice treated with cholecalciferol. Additionally, cholecalciferol treatment per se reduced the immunocontent of NLRP3 inflammasome-related proteins ASC, caspase-1, and TXNIP in the hippocampus of mice. No alterations on hippocampal immunocontent of the autophagic-related proteins phospho-mTORC1, beclin-1, and LC3A/B were observed following cholecalciferol treatment and/or corticosterone administration. Collectively, our results provide insights into the effects of cholecalciferol in depression-related behaviors that seem to be related, at least in part, to GR modulation.


Assuntos
Proteína Beclina-1/metabolismo , Colecalciferol/farmacologia , Corticosterona/administração & dosagem , Depressão/prevenção & controle , Hipocampo/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Animais , Antidepressivos de Segunda Geração/farmacologia , Comportamento Animal/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/metabolismo , Masculino , Camundongos , Receptores de Glucocorticoides/metabolismo
6.
Neurochem Res ; 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31713091

RESUMO

Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed. Using an in vitro model of hippocampal cellular death induced by elevated levels of corticosterone, we investigated if UA prevents corticosterone-induced cytotoxicity in HT22 mouse hippocampal derived cells. Concentrations lower than 25 µM UA did not alter cell viability. Co-incubation with UA for 48 h was able to protect HT22 cells from the reduction on cell viability and from the increase in apoptotic cells induced by corticosterone. Inhibition of protein kinase A (PKA), protein kinase C (PKC) and, Ca2+/calmodulin-dependent protein kinase II (CaMKII), but not phosphoinositide 3-kinase(PI3K), by using the pharmacological the inhibitors: H-89, chelerythrine, KN-62, and LY294002, respectively totally abolished the cytoprotective effects of UA. Finally, UA abrogated the reduction in phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not in phospho-c-Jun kinases induced by corticosterone. These results indicate that the protective effect of UA against the cytotoxicity induced by corticosterone in HT22 cells may involve PKA, PKC, CaMKII, and ERK1/2 activation. The cytoprotective potential of UA against corticosterone-induced cytotoxicity and its ability to modulate intracellular signaling pathways involved in cell proliferation and survival suggest that UA may be a relevant strategy to manage stress-related disorders such as MDD.

7.
Pharmacol Biochem Behav ; 187: 172800, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678791

RESUMO

In this study, we investigated the ability of a single coadministration of subeffective doses of ascorbic acid and ketamine to reverse the depressive-like behavior induced by chronic unpredictable stress (CUS) in mice. Moreover, we examined the effect of combined administration of ascorbic acid and ketamine on hippocampal phosphorylation of p70S6K and immunocontents of GLUA1 and PSD-95 in mice submitted to the CUS procedure. CUS procedure was applied for 21 days. Animals received a single coadministration of subeffective doses of ascorbic acid (0.1 mg/kg) and ketamine (0.1 mg/kg) and were subjected to behavioral evaluation 24 h after the treatments. Immediately after the behavioral observations the hippocampi were dissected for Western blotting analyses. Our results revealed that a single administration of subeffective doses of ascorbic acid and ketamine completely reversed the depressive-like behavior induced by CUS, however, this effect was not accompanied by changes in the phosphorylation of p70S6K and immunocontent of GLUA1 or PSD95 in the hippocampus. These findings point to a synergistic antidepressant-like effect of ascorbic acid and ketamine, paving the way for additional studies on the combined use of these compounds for the management of major depressive disorder (MDD).


Assuntos
Antidepressivos/farmacologia , Ácido Ascórbico/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Ketamina/farmacologia , Estresse Psicológico/complicações , Animais , Antidepressivos/administração & dosagem , Ácido Ascórbico/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Ketamina/administração & dosagem , Locomoção/efeitos dos fármacos , Camundongos , Resultado do Tratamento
8.
Neurochem Int ; 118: 275-285, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763645

RESUMO

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most robust neurobiological findings in the pathophysiology of major depressive disorder (MDD) over the last 40 years. The persistent increase in glucocorticoids levels induces morphological and anatomical changes in the brain, especially in the hippocampus. Ketamine represents a major advance for the treatment of MDD, however the psychotomimetic effects of this compound limit its widespread use. Agmatine is a neuromodulator that has been shown to be a putative novel and well-tolerated antidepressant/augmenter drug. In this study, the exposure of HT22 hippocampal neuronal cell line to corticosterone (50 µM) induced a significant neuronal cell death. Interestingly, the incubation of HT22 cells with the fast-acting antidepressant drug ketamine (1 µM) prevented the corticosterone-induced toxicity. Similarly, agmatine caused a significant cytoprotection at the concentration of 0.1 µM against corticosterone (50 µM) cell damage. Notably, the incubation with a subthreshold concentration of ketamine (0.01 µM) in combination with a subthreshold concentration of agmatine (0.001 µM) prevented the neuronal damage elicited by corticosterone (50 µM). A 24 h co-incubation with subthreshold concentrations of ketamine (0.01 µM) and agmatine (0.001 µM) was able to cause a significant increase in the phosphorylation levels of Akt (Ser473) and p70S6 kinase (Thr389) as well as PSD95 immunocontent. Neither glycogen synthase kinase-3ß (Ser9) phosphorylation nor ß catenin immunocontent were altered by a 24 h co-incubation period. Finally, the co-incubation of cells for 30 min did not produce any effect in the phosphorylation or immunocontent of any protein investigated. Taken together, our results support the notion that the combination of subthreshold concentrations of ketamine and agmatine has cytoprotective effects against corticosterone-induced cell death. This effect is accompanied by its ability to activate Akt and mTOR/S6 kinase signaling pathway, and increase the expression of synaptic proteins.


Assuntos
Agmatina/administração & dosagem , Ketamina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Analgésicos/administração & dosagem , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Transformada , Corticosterona/toxicidade , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Camundongos , Transdução de Sinais/efeitos dos fármacos
9.
Psychoneuroendocrinology ; 91: 132-141, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550676

RESUMO

This narrative review will present and discuss clinical data from 16 cross-sectional and 6 longitudinal studies examining the relationship between body mass index (BMI), symptoms of depression and peripheral inflammation. Our aim is to determine which of obesity and depression contributes best to the peripheral low-grade inflammation frequently associated to both conditions. Studies including a complete evaluation of inflammatory markers are scarce and high levels of interleukin-6 (IL-6) and C-reactive protein (CRP) are the most consistent findings associated with obesity and symptoms of depression. Among the cross-sectional studies, seven studies, including a total of 9421 individuals, pointed to BMI as the major factor associated with systemic low-grade inflammation. However, in four studies, including 16,837 individuals, CRP levels remained associated with the symptoms of depression even after correction for BMI, suggestion that in the absence of overweight or obesity other sources of peripheral inflammation might contribute to presence of depressive symptoms. Additionally, another five studies, including 5569 individuals failed to find an association between depression and peripheral inflammation, reinforcing the heterogeneity of this condition. In the longitudinal data, changes in BMI were associated with a reduction in depressive scores at follow-up, after bariatric surgery or after diet. In four longitudinal studies, high levels of CRP were found to be associated with depression even after adjustment for BMI and weight loss, further corroborating the idea that other sources of peripheral inflammation might contribute to depressive symptoms. Thus it seems that both obesity and depressive symptoms can contribute to peripheral inflammation, and once installed the presence of inflammation can contribute to several behavioral alterations that reinforce the cyclic pattern of co-occurrence observed in patients with obesity and MDD. Future clinical studies should focus on strategic efforts to collect new data and to improve or standardize methods for the evaluation of depression, body composition and a more complete inflammatory profile. These approaches are essential for the development of pharmacological and/or non-pharmacological strategies designed to break this cyclic pattern of co-occurrence.


Assuntos
Depressão/imunologia , Depressão/fisiopatologia , Obesidade/psicologia , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Estudos Transversais , Depressão/complicações , Transtorno Depressivo/complicações , Feminino , Humanos , Inflamação/complicações , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...