Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 17(3): 2103-2162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147712

RESUMO

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

3.
Science ; 333(6050): 1737-9, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21940891

RESUMO

Megacities are immense sources of air pollutants, with large impacts on air quality and climate. However, emission inventories in many of them still are highly uncertain, particularly in developing countries. Satellite observations allow top-down estimates of emissions to be made for nitrogen oxides (NO(x) = NO + NO(2)), but require poorly quantified a priori information on the NO(x) lifetime. We present a method for the simultaneous determination of megacity NO(x) emissions and lifetimes from satellite measurements by analyzing the downwind patterns of NO(2) separately for different wind conditions. Daytime lifetimes are ~4 hours at low and mid-latitudes, but ~8 hours in wintertime for Moscow. The derived NO(x) emissions are generally in good agreement with existing emission inventories, but are higher by a factor of 3 for the Saudi Arabian capital Riyadh.

4.
Appl Opt ; 50(5): 738-54, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21343997

RESUMO

We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

5.
Appl Opt ; 49(17): 3282-90, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20539345

RESUMO

We propose a method for identifying clear-sky scenarios from a measurement time series over satellite-observed ground pixels of unknown surface albedo and aerosol type. The lack of a general monotonic relationship between aerosol loading and observed reflectance encumbers the ordering of the observation time series according to aerosol loading. This problem is ameliorated by using two wavelengths at which the surface albedos are known to differ. Treating an observation as being cloud/aerosol free allows for the determination of the corresponding Lambertian equivalent albedo, the relative contrast of which at the two wavelengths varies monotonically with respect to aerosol-loading, clear-sky and completely clouded scenarios representing the extreme cases. Applying this method to the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography measurements over a nondark surface, we validate it by comparing measured against modeled O(2) A- and B-band absorption at the retrieved albedo in an aerosol-free atmosphere.

6.
Proc Natl Acad Sci U S A ; 107(15): 6582-7, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20160121

RESUMO

In the polar tropospheric boundary layer, reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. After polar sunrise, air masses enriched in reactive bromine cover areas of several million square kilometers. Still, the source and release mechanisms of halogens are not completely understood. We report measurements of halogen oxides performed in the Amundsen Gulf, Arctic, during spring 2008. Active long-path differential optical absorption spectroscopy (LP-DOAS) measurements were set up offshore, several kilometers from the coast, directly on the sea ice, which was never done before. High bromine oxide concentrations were detected frequently during sunlight hours with a characteristic daily cycle showing morning and evening maxima and a minimum at noon. The, so far, highest observed average mixing ratio in the polar boundary layer of 41 pmol/mol (equal to pptv) was detected. Only short sea ice contact is required to release high amounts of bromine. An observed linear decrease of maximum bromine oxide levels with ambient temperature during sunlight, between -24 degrees C and -15 degrees C, provides indications on the conditions required for the emission of RHS. In addition, the data indicate the presence of reactive chlorine in the Arctic boundary layer. In contrast to Antarctica, iodine oxide was not detected above a detection limit of 0.3 pmol/mol.


Assuntos
Monitoramento Ambiental/instrumentação , Análise Espectral/métodos , Regiões Árticas , Bromo/química , Cloro/química , Monitoramento Ambiental/métodos , Halogênios/química , Modelos Químicos , Oceanos e Mares , Óxidos/química , Ozônio/química , Sais/química , Temperatura , Fatores de Tempo
7.
Opt Lett ; 34(23): 3716-8, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19953172

RESUMO

LEDs are a promising new type of light source for differential optical absorption spectroscopy (DOAS). Varying differential structures in the emission spectrum of LEDs, however, display a potentially severe problem. We show that the structures, which originate from a Fabry-Pérot etalon, may be removed by tilting the emitter, which at the same time increases the radiant flux coupled into the subsequent optical system. The results of long-path DOAS measurements, where we apply our method on a blue LED for the suppression of periodic structures, are also presented.

8.
Environ Sci Technol ; 43(24): 9117-23, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20000501

RESUMO

Nitrate radical (NO(3)), an important nighttime tropospheric oxidant, was measured continuously for two years (July 2005 to September 2007) in Jerusalem, a semiarid urban site, by long-path differential optical absorption spectroscopy (LP-DOAS). From this period, 21 days with the highest concentrations of nitrate radical (above 220 pptv) were selected for analysis. Joint measurements with the University of Heidelberg's LP-DOAS showed good agreement (r = 0.94). For all daytime measurements, NO(3) remained below the detection limit (8.5 pptv). The highest value recorded was more than 800 pptv (July 27, 2007), twice the maximum level reported previously. For this subset of measurements, mean maximum values for the extreme events were 345 pptv (SD = 135 pptv). Concentrations rose above detection limits at sunset, peaked between midnight and early morning, and returned to zero at sunrise. These elevated concentrations of NO(3) were a consequence of several factors, including an increase in ozone concentrations parallel to a substantial decrease in relative humidity during the night; Mean nighttime NO(2) levels above 10 ppbv, which prevented a deficiency in NO(3) precursors; Negligible NO levels during the night; and a substantial decrease in the loss processes, which led to a lower degradation frequency and allowed NO(3) lifetimes to build up to a maximum mean of 25 min. The results indicate that the major sink pathway for NO(3) was direct homogeneous gas phase reactions with VOC, and a smaller indirect pathway via hydrolysis of N(2)O(5). The Jerusalem measurements were used to estimate the oxidation potential of extreme NO(3) levels at an urban location. The 24 h average potential of NO(3), OH, and O(3) to oxidize hydrocarbons was evaluated for 30 separate VOCs. NO(3) was found to be responsible for approximately 70% of the oxidation of total VOCs and nearly 75% of the olefinic VOCs; which was more than twice the VOC oxidation potential of the OH radical. These results establish the NO(3) radical as an important atmospheric oxidant in Jerusalem.


Assuntos
Poluentes Atmosféricos/análise , Cidades , Radicais Livres/análise , Nitratos/análise , Humanos , Israel , Oxirredução , Compostos Orgânicos Voláteis/análise
9.
J Environ Manage ; 90(5): 1814-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19111964

RESUMO

During the CAREBEIJING campaign in 2006, imaging differential optical absorption spectroscopy (I-DOAS) measurements were made from 08:00 to 16:00 on September 9 and 10 over Beijing, China. Detailed images of the near-surface NO(2) differential slant column density (DSCD) distribution over Beijing were obtained. Images with less than a 30-min temporal resolution showed both horizontal and vertical variations in NO(2) distributions. For DSCD to mixing ratio conversion, path length along the lines of I-DOAS lines of sight was estimated using the light-extinction coefficient and Angstrom exponent data obtained by a transmissometer and a sunphotometer, respectively. Mixing ratios measured by an in-situ NO(2) analyzer were compared with those estimated by the I-DOAS instrument. The obtained temporal and spatial variations in NO(2) distributions measured by I-DOAS for the two days are interpreted with consideration of the locations of the major NO(x) sources and local wind conditions. I-DOAS measurements have been applied in this study for estimating NO(2) distribution over an urban area with multiple and distributed emission sources. Results are obtained for estimated temporal and spatial NO(2) distributions over the urban atmosphere; demonstrating the capability of the I-DOAS technique. We discuss in this paper the use of I-DOAS measurements to estimate the NO(2) distribution over an urban area with multiple distributed emission sources.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Análise Espectral/métodos , Poluição do Ar/análise , China , Óptica e Fotônica
10.
Appl Opt ; 45(24): 6227-40, 2006 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-16892129

RESUMO

A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.

11.
Appl Opt ; 45(9): 2077-88, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16579579

RESUMO

We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere.

12.
Environ Monit Assess ; 104(1-3): 281-93, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15931992

RESUMO

In this paper, the applicability of a Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) system was checked for the feasibility of the simultaneous measurement of trace gases (such as 03, NO2, SO2, and HCHO) and atmospheric visibility (light extinction by aerosols) in Asian urban areas. Field studies show that an LP-DOAS system can simultaneously measure the key pollutants (such as O3, NO2, SO2, and HCHO) at detection limits in the ppb/sub-ppb range as well as the Mie extinction coefficient with an uncertainty of approximately 0.1 km(-1) at time resolution of a few minutes. It is thus concluded that the use of LP-DOAS system is feasible for simultaneous measurement of gaseous pollutants as well as an atmospheric extinction coefficient which is tightly bound to fine particulate concentration.


Assuntos
Poluentes Atmosféricos/análise , Análise Espectral/métodos , Aerossóis , Ásia , Atmosfera , Cidades , Estudos de Viabilidade , Análise Espectral/instrumentação
13.
Appl Opt ; 44(16): 3246-53, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15943258

RESUMO

UV-visible absorption spectroscopy with extraterrestrial light sources is a widely used technique for the measurement of stratospheric and tropospheric trace gases. We focus on differential optical absorption spectroscopy (DOAS) and present an operator notation as a new formalism to describe the different processes in the atmosphere and the simplifying assumptions that compose the advantage of DOAS. This formalism provides tools to classify and reduce possible error sources of DOAS applications.

14.
Appl Opt ; 44(1): 91-102, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15662890

RESUMO

A new lightweight near-infrared tunable diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode spectrometer) was developed for flights to the stratosphere as an additional in situ sensor on existing balloonborne payloads. Free-air absorption measurements in the near infrared are made with an open-path Herriott cell with new design features. It offers two individual absorption path lengths optimized for CH4 with 74 m (136 pass) and H2O with 36 m (66 pass). New electronic features include a real-time gain control loop that provides an autocalibration function. In flight-ready configuration the instrument mass is approximately 20 kg, including batteries. It successfully measured stratospheric CH4 and H2O profiles on high-altitude balloons on four balloon campaigns (Environmental Satellite validation) between October 2001 and June 2003. On these first flights, in situ spectra were recorded from ground level to 32,000-m altitude with a sensitivity of 0.1 ppm [(parts per million), ground] to 0.4 ppm (32,000 m) for methane and 0.15-0.5 ppm for water.

15.
Appl Opt ; 43(24): 4711-7, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15352396

RESUMO

We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror.

16.
Appl Opt ; 43(22): 4415-26, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15298416

RESUMO

A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...