Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 132(9): 2633-2650, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209538

RESUMO

KEY MESSAGE: A total of 449 barley accessions were phenotyped for Pyrenophora teres f. teres resistance at three locations and in greenhouse trials. Genome-wide association studies identified 254 marker-trait associations corresponding to 15 QTLs. Net form of net blotch is one of the most important diseases of barley and is present in all barley growing regions. Under optimal conditions, it causes high yield losses of 10-40% and reduces grain quality. The most cost-effective and environmentally friendly way to prevent losses is growing resistant cultivars, and markers linked to effective resistance factors can accelerate the breeding process. Here, 449 barley accessions expressing different levels of resistance comprising landraces and commercial cultivars from the centres of diversity were selected. The set was phenotyped for seedling resistance to three isolates in controlled-environment tests and for adult plant resistance at three field locations (Belarus, Germany and Australia) and genotyped with the 50 k iSelect chip. Genome-wide association studies using 33,818 markers and a compressed mixed linear model to account for population structure and kinship revealed 254 significant marker-trait associations corresponding to 15 distinct QTL regions. Four of these regions were new QTL that were not described in previous studies, while a total of seven regions influenced resistance in both seedlings and adult plants.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ligação Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
2.
Theor Appl Genet ; 131(1): 127-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980023

RESUMO

KEY MESSAGE: Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Austrália , Basidiomycota , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
3.
Phytopathology ; 107(7): 834-841, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430019

RESUMO

We identified Rph24 as a locus in barley (Hordeum vulgare L.) controlling adult plant resistance (APR) to leaf rust, caused by Puccinia hordei. The locus was previously reported as a quantitative trait locus in barley line ND24260-1 and named qRphND. We crossed ND24260-1 to the leaf-rust-susceptible standard Gus and determined inheritance patterns in the progeny. For the comparative marker frequency analysis (MFA), resistant and susceptible tails of the F2 were genotyped with Diversity Arrays Technology genotyping-by-sequencing (DArT-Seq) markers. The Rph24 locus was positioned at 55.5 centimorgans on chromosome 6H on the DArT-Seq consensus map. Evaluation of F2:3 families confirmed that a single locus from ND24260-1 conferred partial resistance. The haploblock strongly associated with the Rph24 locus was used to estimate the allele frequency in a collection of 282 international barley cultivars. Rph24 was frequently paired with APR locus Rph20 in cultivars displaying high levels of APR to leaf rust. The markers identified in this study for Rph24 should be useful for marker-assisted selection.


Assuntos
Basidiomycota/fisiologia , Hordeum/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Locos de Características Quantitativas , Especificidade da Espécie
4.
Theor Appl Genet ; 128(3): 489-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575837

RESUMO

KEY MESSAGE: Evaluation of resistance to Pyrenophora teres f. maculata in barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.


Assuntos
Ascomicetos , Resistência à Doença/genética , Hordeum/genética , Locos de Características Quantitativas , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Genótipo , Hordeum/microbiologia , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Phytopathology ; 100(12): 1298-306, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20731534

RESUMO

Fourteen single nucleotide polymorphisms (SNPs) were identified at the mating type (MAT) loci of Pyrenophora teres f. teres (Ptt), which causes net form (NF) net blotch, and P. teres f. maculata (Ptm), which causes spot form (SF) net blotch of barley. MAT-specific SNP primers were developed for polymerase chain reaction (PCR) and the two forms were differentiated by distinct PCR products: PttMAT1-1 (1,143 bp) and PttMAT1-2 (1,421 bp) for NF MAT1-1 and MAT1-2 isolates; PtmMAT1-1 (194 bp) and PtmMAT1-2 (939 bp) for SF MAT1-1 and MAT1-2 isolates, respectively. Specificity was validated using 37 NF and 17 SF isolates collected from different geographic regions. Both MAT1-1 and MAT1-2 SNP primers retained respective specificity when used in duplex PCR. No cross-reactions were observed with DNA from P. graminea, P. tritici-repentis, or other ascomycetes, or barley. Single or mixed infections of the two different forms were also differentiated. This study provides the first evidence that the limited SNPs at the MAT locus are sufficient for distinguishing closely related heterothallic ascomycetes at subspecies levels, thus allowing pathogenicity and mating type characteristics of the fungus to be determined simultaneously. Methods presented will facilitate pathogen detection, disease management, and epidemiological studies.


Assuntos
Ascomicetos/genética , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Ascomicetos/classificação , Ascomicetos/patogenicidade , Sequência de Bases , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Hordeum/genética , Fases de Leitura Aberta , Reação em Cadeia da Polimerase/métodos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...