Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2309205120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988467

RESUMO

Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental , Camundongos , Animais , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Inflamação/metabolismo , Diferenciação Celular , Encefalomielite Autoimune Experimental/genética , Receptores de Antígenos de Linfócitos T/genética , Ubiquitina-Proteína Ligases
3.
Ther Adv Neurol Disord ; 15: 17562864221141505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518553

RESUMO

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tremendous implications for the management of patients with autoimmune conditions such as multiple sclerosis (MS) under immune therapies targeting CD20+ B cells (aCD20). Objectives: Here, we investigated humoral and cellular immune responses, including anti-spike titers, neutralization against SARS-CoV-2 wild-type (WT), delta, and omicron variant and T cell responses of aCD20-treated relapsing-remitting MS patients following SARS-CoV-2 vaccination compared with healthy controls. Methods: Blood samples were collected within 4-8 weeks following the second vaccination against SARS-CoV-2. Sera were analyzed for anti-SARS-CoV-2 spike antibodies and neutralization capacity against pseudovirus for wild-type (WT), delta, and omicron variant. Peripheral blood mononuclear cells (PBMCs) were stimulated with a SARS-CoV-2 peptide pool and analyzed via flow cytometry. Results: The aCD20-treated MS patients had lower anti-SARS-CoV-2-spike titers, which correlated with B cell repopulation. Sera of aCD20-treated patients had reduced capacity to neutralize WT, delta, and omicron pseudoviruses in vitro. On the contrary, PBMCs of aCD20-treated patients elicited higher frequencies of CD3+ T cells and CD4+ T cells and comparable response of cytotoxic T cells, while Th1 response was reduced following restimulation with SARS-CoV-2. Conclusion: In summary, aCD20-treated patients have a reduced humoral immune response, depending on B cell repopulation, in accordance with preserved cellular immune response, suggesting partial cellular protection against SARS-CoV-2.

4.
Front Immunol ; 13: 1049070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532034

RESUMO

Despite the development of vaccines, which protect healthy people from severe and life-threatening Covid-19, the immunological responses of people with secondary immunodeficiencies to these vaccines remain incompletely understood. Here, we investigated the humoral and cellular immune responses elicited by mRNA-based SARS-CoV-2 vaccines in a cohort of people living with HIV (PLWH) receiving anti-retroviral therapy. While antibody responses in PLWH increased progressively after each vaccination, they were significantly reduced compared to the HIV-negative control group. This was particularly noteworthy for the Delta and Omicron variants. In contrast, CD4+ Th cell responses exhibited a vaccination-dependent increase, which was comparable in both groups. Interestingly, CD4+ T cell activation negatively correlated with the CD4 to CD8 ratio, indicating that low CD4+ T cell numbers do not necessarily interfere with cellular immune responses. Our data demonstrate that despite the lower CD4+ T cell counts SARS-CoV-2 vaccination results in potent cellular immune responses in PLWH. However, the reduced humoral response also provides strong evidence to consider PLWH as vulnerable group and suggests subsequent vaccinations being required to enhance their protection against COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Ativação Linfocitária
5.
Front Immunol ; 13: 980526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119053

RESUMO

Objective: The pandemic induced by SARS-CoV-2 has huge implications for patients with immunosuppression that is caused by disorders or specific treatments. Especially approaches targeting B cells via anti-CD20 therapy are associated with impaired humoral immune response but sustained cellular immunity. Ofatumumab is a human anti-CD20 directed antibody applied in low dosages subcutaneously, recently licensed for Multiple Sclerosis (MS). Effects of early ofatumumab treatment on alterations of immune cell composition and immune response towards SARS-CoV-2 are incompletely understood. Methods: We here investigated immune cell alterations in early ofatumumab (Ofa) treated patients and effects on humoral (titer, neutralization capacity against wild type, Delta and Omicron) and cellular immune responses in Ofa treated MS patients following a third vaccination against SARS-CoV-2 compared to healthy controls. Results: We show that a mean treatment duration of three months in the Ofa group led to near complete B cell depletion in line with altered composition of certain CD4+ T cell subpopulations such as enhanced frequencies of naive and a decrease of non-suppressive regulatory T cells (Tregs). Titer and neutralization capacity against SARS-CoV-2 variants was impaired while cellular immune response was sustained, characterized by a strong T helper 1 profile (Th1). Interpretation: In summary, low dosage ofatumumab treatment elicits sustained depletion of B cells in line with alterations of immune cells, mainly Tregs. This is associated with impaired humoral immune response towards SARS-CoV-2 vaccination but preserved, Th1 driven cellular immunity adding crucial information regarding early effects of low dosage anti-CD20 therapy on humoral and cellular immunity.


Assuntos
Tratamento Farmacológico da COVID-19 , Esclerose Múltipla , Anticorpos Monoclonais Humanizados , Vacinas contra COVID-19 , Humanos , Imunidade Celular , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2 , Vacinação
6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806279

RESUMO

Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosfolipase C gama , Receptores de Antígenos de Linfócitos T , Timo , Quinases da Família src , Animais , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Fosfolipase C gama/imunologia , Fosforilação , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Timo/imunologia , Domínios de Homologia de src , Quinases da Família src/imunologia
7.
Front Immunol ; 13: 1062210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618413

RESUMO

With the emergence of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs), vaccination studies that elucidate the efficiency and effectiveness of a vaccination campaign are critical to assess the durability and the protective immunity provided by vaccines. SARS-CoV-2 vaccines have been found to induce robust humoral and cell-mediated immunity in individuals vaccinated with homologous vaccination regimens. Recent studies also suggest improved immune response against SARS-CoV-2 when heterologous vaccination strategies are employed. Yet, few data exist on the extent to which heterologous prime-boost-boost vaccinations with two different vaccine platforms have an impact on the T cell-mediated immune responses with a special emphasis on the currently dominantly circulating Omicron strain. In this study, we collected serum and peripheral blood mononuclear cells (PBMCs) from 57 study participants of median 35-year old's working in the health care field, who have received different vaccination regimens. Neutralization assays revealed robust but decreased neutralization of Omicron VOC, including BA.1 and BA.4/5, compared to WT SARS-CoV-2 in all vaccine groups and increased WT SARS-CoV-2 binding and neutralizing antibodies titers in homologous mRNA prime-boost-boost study participants. By investigating cytokine production, we found that homologous and heterologous prime-boost-boost-vaccination induces a robust cytokine response of CD4+ and CD8+ T cells. Collectively, our results indicate robust humoral and T cell mediated immunity against Omicron in homologous and heterologous prime-boost-boost vaccinated study participants, which might serve as a guide for policy decisions.


Assuntos
COVID-19 , Vacinas , Humanos , Adulto , Vacinas contra COVID-19 , Linfócitos T CD8-Positivos , Formação de Anticorpos , Leucócitos Mononucleares , SARS-CoV-2 , COVID-19/prevenção & controle , Citocinas
8.
Front Immunol ; 12: 705436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512629

RESUMO

Autophagy is an evolutionary conserved catabolic pathway that ensures the degradation of intracellular components. The autophagic pathway is regulated by autophagy-related (Atg) proteins that govern formation of double-membraned vesicles called autophagosomes. Autophagy deficiency in regulatory T (Treg) cells leads to increased apoptosis of these cells and to the development of autoimmune disorders, predominantly characterized by intestinal inflammation. Recently, RORγt-expressing Treg cells have been identified as key regulators of gut homeostasis, preventing intestinal immunopathology. To study the role of autophagy in RORγt+ Foxp3+ Treg cells, we generated mice lacking the essential component of the core autophagy machinery Atg5 in Foxp3+ cells. Atg5 deficiency in Treg cells led to a predominant intestinal inflammation. While Atg5-deficient Treg cells were reduced in peripheral lymphoid organs, the intestinal RORγt+ Foxp3+ subpopulation of Treg cells was most severely affected. Our data indicated that autophagy is essential to maintain the intestinal RORγt+ Foxp3+ Treg population, thereby protecting the mice from gut inflammatory disorders.


Assuntos
Proteína 5 Relacionada à Autofagia/imunologia , Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Mucosa Intestinal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proteína 5 Relacionada à Autofagia/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Homeostase/genética , Camundongos , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares
9.
J Allergy Clin Immunol ; 147(1): 335-348.e11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407834

RESUMO

BACKGROUND: The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE: We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS: Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS: Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION: Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colite/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Espermidina/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
10.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764479

RESUMO

Cell fate decisions regulating survival and death are essential for maintaining tissue homeostasis; dysregulation thereof can lead to tumor development. In some cases, survival and death are triggered by the same receptor, e.g., tumor necrosis factor (TNF)-receptor 1 (TNFR1). We identified a prominent role for the cold shock Y-box binding protein-1 (YB-1) in the TNF-induced activation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65. In the absence of YB-1, the expression of TNF receptor-associated factor 2 (TRAF2), a central component of the TNF receptor signaling complex required for NF-κB activation, is significantly reduced. Therefore, we hypothesized that the loss of YB-1 results in a destabilization of TRAF2. Consistent with this hypothesis, we observed that YB-1-deficient cells were more prone to TNF-induced apoptotic cell death. We observed enhanced effector caspase-3 activation and could successfully rescue the cells using the pan-caspase inhibitor zVAD-fmk, but not necrostatin-1. Taken together, our results indicate that YB-1 plays a central role in promoting cell survival through NF-κB activation and identifies a novel mechanism by which enhanced YB-1 expression may contribute to tumor development.

11.
Nat Commun ; 11(1): 1056, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103006

RESUMO

NKp46+ innate lymphoid cells (ILC) modulate tissue homeostasis and anti-microbial immune responses. ILC development and function are regulated by cytokines such as Interleukin (IL)-7 and IL-15. However, the ILC-intrinsic pathways translating cytokine signals into developmental programs are largely unknown. Here we show that the anti-apoptotic molecule cellular FLICE-like inhibitory protein (c-FLIP) is crucial for the generation of IL-7/IL-15-dependent NKp46+ ILC1, including conventional natural killer (cNK) cells, and ILC3. Cytokine-induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) precedes up-regulation of c-FLIP, which protects developing NKp46+ ILC from TNF-induced apoptosis. NKp46+ ILC-specific inactivation of c-FLIP leads to the loss of all IL-7/IL-15-dependent NKp46+ ILC, thereby inducing early-onset chronic colitis and subsequently microbial dysbiosis; meanwhile, the depletion of cNK, but not NKp46+ ILC1/3, aggravates experimental colitis. In summary, our data demonstrate a non-redundant function of c-FLIP for the generation of NKp46+ ILC, which protect T/B lymphocyte-sufficient mice from intestinal inflammation.


Assuntos
Antígenos Ly/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Colite/prevenção & controle , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Antígenos Ly/genética , Apoptose/fisiologia , Linfócitos B/imunologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Células Cultivadas , Colite/induzido quimicamente , Colite/patologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Fosforilação , Linfócitos T/imunologia
12.
Eur J Immunol ; 50(2): 292-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724737

RESUMO

Mice lacking CD4+ T cells or B cells are highly susceptible to Citrobacter rodentium infection. In this study, we show that the activity of the transcription factor c-Rel in lymphocytes is crucial for clearance of C. rodentium. Mice deficient for c-Rel fail to generate protective antibodies and to eradicate the pathogen.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos
13.
Front Immunol ; 10: 1583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354726

RESUMO

Next to the classical developmental route, in which first CD25 and subsequently Foxp3 are induced to generate thymic regulatory T (Treg) cells, an alternative route has been described. This alternative route is characterized by reciprocal induction of Foxp3 and CD25, with CD25 induction being required to rescue developing Treg cells from Foxp3-induced apoptosis. NF-κB has been demonstrated to be crucial for the development of thymic Treg cells via the classical route. However, its impact on the alternative route is poorly characterized. Using single and double deficient mice for key regulators of the classical route, c-Rel and IκBNS, we here demonstrate that NF-κB is essential for the generation of alternative CD25-Foxp3+ precursors, as well. Thus, c-Rel and IκBNS govern both routes of thymic Treg cell development.


Assuntos
Proteínas I-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Linfócitos T Reguladores/fisiologia , Timócitos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Proteínas I-kappa B/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-rel/genética
14.
Cell Death Dis ; 10(6): 384, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097685

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most-prominent tumor type of kidney cancers. Resistance of renal cell carcinoma (RCC) against tumor therapy is often owing to apoptosis resistance, e.g., by overexpression of anti-apoptotic proteins. However, little is known about the role of the apoptosis inhibitor c-FLIP and its potential impact on death receptor-induced apoptosis in ccRCC cells. In this study, we demonstrate that c-FLIP is crucial for resistance against CD95L-induced apoptosis in four ccRCC cell lines. Strikingly, downregulation of c-FLIP expression by short hairpin RNA (shRNA)interference led to spontaneous caspase activation and apoptotic cell death. Of note, knockdown of all c-FLIP splice variants was required to induce apoptosis. Stimulation of ccRCC cells with CD95L induced NF-κB and MAP kinase survival pathways as revealed by phosphorylation of RelA/p65 and Erk1/2. Interestingly, CD95L surface expression was high in all cell lines analyzed, and CD95 but not TNF-R1 clustered at cell contact sites. Downstream of CD95, inhibition of the NF-κB pathway led to spontaneous cell death. Surprisingly, knockdown experiments revealed that c-FLIP inhibits NF-κB activation in the context of CD95 signaling. Thus, c-FLIP inhibits apoptosis and dampens NF-κB downstream of CD95 but allows NF-κB activation to a level sufficient for ccRCC cell survival. In summary, we demonstrate a complex CD95-FLIP-NF-κB-signaling circuit, in which CD95-CD95L interactions mediate a paracrine survival signal in ccRCC cells with c-FLIP and NF-κB both being required for inhibiting cell death and ensuring survival. Our findings might lead to novel therapeutic approaches of RCC by circumventing apoptosis resistance.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/fisiologia , Carcinoma de Células Renais/patologia , Receptor fas/metabolismo , Apoptose/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , NF-kappa B/metabolismo , Transdução de Sinais
15.
Artigo em Inglês | MEDLINE | ID: mdl-28770171

RESUMO

Apoptosis is an important defense mechanism mounted by the immune system to control virus replication. Hence, cytomegaloviruses (CMV) evolved and acquired numerous anti-apoptotic genes. The product of the human CMV (HCMV) UL36 gene, pUL36 (also known as vICA), binds to pro-caspase-8, thus inhibiting death-receptor apoptosis and enabling viral replication in differentiated THP-1 cells. In vivo studies of the function of HCMV genes are severely limited due to the strict host specificity of cytomegaloviruses, but CMV orthologues that co-evolved with other species allow the experimental study of CMV biology in vivo. The mouse CMV (MCMV) homolog of the UL36 gene is called M36, and its protein product (pM36) is a functional homolog of vICA that binds to murine caspase-8 and inhibits its activation. M36-deficient MCMV is severely growth impaired in macrophages and in vivo. Here we show that pUL36 binds to the murine pro-caspase-8, and that UL36 expression inhibits death-receptor apoptosis in murine cells and can replace M36 to allow MCMV growth in vitro and in vivo. We generated a chimeric MCMV expressing the UL36 ORF sequence instead of the M36 one. The newly generated MCMVUL36 inhibited apoptosis in macrophage lines RAW 264.7, J774A.1, and IC-21 and its growth was rescued to wild type levels. Similarly, growth was rescued in vivo in the liver and spleen, but only partially in the salivary glands of BALB/c and C57BL/6 mice. In conclusion, we determined that an immune-evasive HCMV gene is conserved enough to functionally replace its MCMV counterpart and thus allow its study in an in vivo setting. As UL36 and M36 proteins engage the same molecular host target, our newly developed model can facilitate studies of anti-viral compounds targeting pUL36 in vivo.


Assuntos
Apoptose , Interações Hospedeiro-Patógeno , Muromegalovirus/imunologia , Muromegalovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Citomegalovirus/genética , Teste de Complementação Genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Proteínas Virais/genética
16.
J Immunol ; 199(3): 920-930, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652399

RESUMO

Foxp3-expressing regulatory T cells (Tregs) are essential regulators of immune homeostasis and, thus, are prime targets for therapeutic interventions of diseases such as cancer and autoimmunity. c-REL and IκBNS are important regulators of Foxp3 induction in Treg precursors upon γ-chain cytokine stimulation. In c-REL/IκBNS double-deficient mice, Treg numbers were dramatically reduced, indicating that together, c-REL and IκBNS are pivotal for Treg development. However, despite the highly reduced Treg compartment, double-deficient mice did not develop autoimmunity even when aged to more than 1 y, suggesting that c-REL and IκBNS are required for T cell effector function as well. Analyzing Treg development in more detail, we identified a CD122+ subset within the CD25-Foxp3- precursor population, which gave rise to classical CD25+Foxp3- Treg precursors. Importantly, c-REL, but not IκBNS, controlled the generation of classical CD25+Foxp3- precursors via direct binding to the Cd25 locus. Thus, we propose that CD4+GITR+CD122+CD25-Foxp3- cells represent a Treg pre-precursor population, whose transition into Treg precursors is mediated via c-REL.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Autoimunidade , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Camundongos , Inibidor de NF-kappaB alfa/deficiência , Inibidor de NF-kappaB alfa/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-rel/deficiência , Proteínas Proto-Oncogênicas c-rel/genética , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
17.
Cell Rep ; 18(1): 12-22, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052242

RESUMO

Regulatory T (Treg) cells are critical for the shutdown of immune responses and have emerged as valuable targets of immunotherapies. Treg cells can rapidly proliferate; however, the homeostatic processes that limit excessive Treg cell numbers are poorly understood. Here, we show that, compared to conventional T cells, Treg cells have a high apoptosis rate ex vivo correlating with low c-FLIP expression. Treg-specific deletion of c-FLIP in mice resulted in fatal autoimmune disease of a scurfy-like phenotype characterized by absent peripheral Treg cells, activation of effector cells, multi-organ immune cell infiltration, and premature death. Surprisingly, blocking CD95L did not rescue Treg survival in vivo, suggesting additional survival functions of c-FLIP in Treg cells in addition to its classical role in the inhibition of death receptor signaling. Thus, our data reveal a central role for c-FLIP in Treg cell homeostasis and prevention of autoimmunity.


Assuntos
Autoimunidade , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Autoimunidade/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Deleção de Genes , Linfonodos/citologia , Camundongos , Fenótipo , Baço/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Receptor fas/metabolismo
18.
Immunol Lett ; 171: 26-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26804211

RESUMO

The NF-κB/Rel signalling pathway plays a crucial role in numerous biological processes, including innate and adaptive immunity. NF-κB is a family of transcription factors, whose activity is regulated by the inhibitors of NF-κB (IκB). The IκB proteins comprise two distinct groups, the classical (cytoplasmic) and the atypical (nuclear) IκB proteins. Although the cytoplasmic regulation of NF-κB is well characterised, its nuclear regulation mechanisms remain marginally elucidated. However, work from recent years indicated that nuclear IκBs contribute significantly to the modulation of NF-κB-mediated transcription in the immune system. Here, we discuss the role of the atypical IκB proteins Bcl-3, IκBζ, IκBNS, IκBη and IκBL for the regulation of gene expression and effector functions in immune cells.


Assuntos
Quinase I-kappa B/imunologia , Macrófagos/imunologia , NF-kappa B/metabolismo , Proteínas Nucleares/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Humanos , Imunidade , Imunomodulação , NF-kappa B/imunologia , Proteínas Oncogênicas v-rel/metabolismo , Transdução de Sinais
19.
J Immunol ; 194(6): 2888-98, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25694610

RESUMO

IL-17-producing Th17 cells mediate immune responses against a variety of fungal and bacterial infections. Signaling via NF-κB has been linked to the development and maintenance of Th17 cells. We analyzed the role of the unusual inhibitor of NF-κB, IκBNS, in the proliferation and effector cytokine production of murine Th17 cells. Our study demonstrates that nuclear IκBNS is crucial for murine Th17 cell generation. IκBNS is highly expressed in Th17 cells; in the absence of IκBNS, the frequencies of IL-17A-producing cells are drastically reduced. This was measured in vitro under Th17-polarizing conditions and confirmed in two colitis models. Mechanistically, murine IκBNS (-/-) Th17 cells were less proliferative and expressed markedly reduced levels of IL-2, IL-10, MIP-1α, and GM-CSF. Citrobacter rodentium was used as a Th17-inducing infection model, in which IκBNS (-/-) mice displayed an increased bacterial burden and diminished tissue damage. These results demonstrate the important function of Th17 cells in pathogen clearance, as well as in inflammation-associated pathology. We identified IκBNS to be crucial for the generation and function of murine Th17 cells upon inflammation and infection. Our findings may have implications for the therapy of autoimmune conditions, such as inflammatory bowel disease, and for the treatment of gut-tropic infections.


Assuntos
Diferenciação Celular/imunologia , Citrobacter rodentium/imunologia , Colite/imunologia , Infecções por Enterobacteriaceae/imunologia , Proteínas I-kappa B/imunologia , Células Th17/imunologia , Animais , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Citrobacter rodentium/fisiologia , Colite/genética , Colite/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Citometria de Fluxo , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas I-kappa B/deficiência , Proteínas I-kappa B/genética , Camundongos da Linhagem 129 , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th17/metabolismo
20.
Cell Commun Signal ; 11(1): 23, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23578005

RESUMO

Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1ß stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...