Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(6): 8615-8640, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299310

RESUMO

Mid-infrared fiber sources, emitting between 2.5 µm and 5.0 µm, are interesting for their great potential in several application fields such as material processing, biomedicine, remote sensing and infrared countermeasures due to their high-power, their diffraction-limited beam quality as well as their robust monolithic architecture. In this review, we will focus on the recent progress in continuous wave and pulsed mid-infrared fiber lasers and the components that bring these laser sources closer to a field deployment as well as in industrial systems. Accordingly, we will briefly illustrate the potential of such mid-infrared fiber lasers through a few selected applications.

2.
Opt Express ; 28(1): 107-115, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118937

RESUMO

We report the demonstration of a fiber-based supercontinuum source delivering up to 825 mW of average output power between 2.5 and 5.0 µm generated in all-normal dispersion regime. The pumping source consists of an amplified ultrafast Er3+:ZrF4 fiber laser providing high peak power femtosecond pulses at 3.6 µm with an average output power exceeding the watt-level. These pulses are spectrally broadened through self-phase modulation using commercial chalcogenide-based step-index fibers. Al2O3 anti-reflection coatings were sputtered on chalcogenide fiber tips to increase the launching efficiency from 54% to 82%, making this record output power possible, and thus confirming that such coatings can support watt-level pumping with intense femtosecond pulses. To the best of our knowledge, this result represents the highest average output power ever achieved from a As2Se3-based mid-IR supercontinuum source with the potential of a high degree of coherence.

3.
Opt Express ; 27(3): 2170-2183, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732258

RESUMO

In this paper, we investigate laser emission at 3.4µm in heavily-erbium-doped fluoride fibers using dual-wavelength pumping. To this extent, a monolithic 7 mol% erbium-doped fluoride fiber laser bounded by intracore fiber Bragg gratings at 3.42 µm is used to demonstrate a record efficiency of 38.6 % with respect to the 1976 nm pump. Through numerical modeling, we show that similar laser performances at 3.4 µm can be expected in fluoride fibers with erbium concentrations ranging between 1 - 7 mol%, although power scaling should rely on lightly-doped fibers to mitigate the heat load. Moreover, this work studies transverse mode-beating of the 1976 nm core pump and its role in the generation of a periodic luminescent grating and in the trapping of excitation in the metastable energy levels of the erbium system. Finally, we also report on the bistability of the 3.42 µm output power of the 7 mol% erbium-doped fluoride fiber laser.

4.
Opt Express ; 26(17): 22378-22388, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130932

RESUMO

We report on a splice-free erbium-doped all-fiber laser emitting over 20 W at a wavelength of 1610 nm, with a slope efficiency of 19.6 % and an overall efficiency of 18.3% with respect to the launched pump power at 976 nm. The simple cavity design takes advantage of fiber Bragg gratings written directly in the gain fiber through the polymer coating and clad-pumping from a single commercial pump diode to largely simplify the assembling process, making this cavity ideal for large-scale commercial deployment. Two single-mode and singly erbium-doped silica fibers were fabricated in-house: the first to assess the effects of a high erbium concentration (0.36 mol.% Er2O3), yielding a low efficiency of 2.5 % with respect to launched pump power, and the second to achieve the improved result mentioned above (0.03 mol.% Er2O3). Numerical simulations show the link between the performance of each cavity and ion pair-induced quenching.

5.
Opt Express ; 26(11): 13952-13960, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877440

RESUMO

We report on infrared supercontinuum (SC) generation through subsequent nonlinear propagation in concatenated step-index fluoride and As2Se3 fiber. These fibers were pumped by an all-fiber laser source based on an erbium amplifier followed by a thulium power amplifier. ZBLAN and InF3 fibers were compared for the concatenated scheme. The broadest SC produced was achieved by optimizing the length of the InF3 fiber. This arrangement allowed the generation of 200 mW infrared SC with high spectral flatness and spanning from 1.4 µm to 6.4 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...