Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Physiol B ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453727

RESUMO

Total dissolved gas supersaturation (TDGS) occurs when air mixes with water under pressure, which can be caused by features such as hydroelectric dams and waterfalls. Total dissolved gas supersaturation can cause harmful bubbles to grow in the tissues of aquatic animals, a condition known as gas bubble trauma (GBT). As gills are the primary gas exchange surface for most fish, it is through the gills that elevated total dissolved gases enter the blood and tissues of a fish. We describe the role of the gills in admitting TDGS into the body and discuss potential effects of bubbles in the gills on blood oxygen and carbon dioxide diffusion, blood ion and pH homeostasis, and nitrogenous waste excretion, as well as downstream effects on aerobic swimming performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27746133

RESUMO

As human populations continue to expand, increases in coastal development have led to the alteration of much of the world's mangrove habitat, creating problems for the multitude of species that inhabit these unique ecosystems. Habitat alteration often leads to changes in habitat complexity and predation risk, which may serve as additional stressors for those species that rely on mangroves for protection from predators. However, few studies have been conducted to date to assess the effects of these specific stressors on glucocorticoid (GC) stress hormone levels in wild fish populations. Using the checkered puffer as a model, our study sought to examine the effects of physical habitat complexity and predator environment on baseline and acute stress-induced GC levels. This was accomplished by examining changes in glucose and cortisol concentrations of fish placed in artificial environments for short periods (several hours) where substrate type and the presence of mangrove roots and predator cues were manipulated. Our results suggest that baseline and stress-induced GC levels are not significantly influenced by changes in physical habitat complexity or the predator environment using the experimental protocol that we applied. Although more research is required, the current study suggests that checkered puffers may be capable of withstanding changes in habitat complexity and increases in predation risk without experiencing adverse GC-mediated physiological effects, possibly as a result of the puffers' unique morphological and chemical defenses that help them to avoid predation in the wild.


Assuntos
Biodiversidade , Cadeia Alimentar , Glucocorticoides/sangue , Hidrocortisona/sangue , Estresse Fisiológico , Tetraodontiformes/fisiologia , Áreas Alagadas , Animais , Aquicultura , Bahamas , Glicemia/análise , Sinais (Psicologia) , Desenvolvimento Econômico , Tetraodontiformes/sangue , Tetraodontiformes/crescimento & desenvolvimento , Urbanização
3.
Physiol Behav ; 152(Pt A): 68-78, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26375573

RESUMO

Although consistent individual-level differences in behaviour are widespread and potentially important in evolutionary and ecological processes, relatively few studies focus on the physiological mechanisms that might underlie and regulate these individual-level differences in wild populations. We conducted experiments to determine whether checkered pufferfish (Sphoeroides testudineus), which were collected from a dynamic (in terms of depth and water temperature) tidal mangrove creek environment in The Bahamas, have consistent individual-level differences in locomotor activity and the response to a simulated predator threat, as well as swimming performance and puffing in response to stressors. The relationships between personality and performance traits were evaluated to determine whether they represented stress-coping styles or syndromes. Subsequently, a displacement study was conducted to determine how personality and performance in the laboratory compared to movements in the field. In addition, we tested whether a physiological dose of the stress hormone cortisol would alter individual consistency in behavioural and performance traits. We found that pufferfish exhibited consistent individual differences in personality traits over time (e.g., activity and the duration of a response to a threat) and that performance was consistent between the lab and the natural enclosure. Locomotor activity and the duration of startled behaviour were not associated with swimming and puffing performance. Locomotor activity, puffing performance, and swimming performance were not related to whether fish returned to the tidal creek of capture after displacement. Similarly, a cortisol treatment did not modify behaviour or performance in the laboratory. The results reveal that consistent individual-level differences in behaviour and performance were present in a population from a fluctuating and physiologically challenging environment but that such traits are not necessarily correlated. We also determined that certain individual performance traits were repeatable between the lab and a natural enclosure. However, we found no evidence of a relationship between exogenous cortisol levels and behavioural traits or performance in these fish, which suggests that other internal and external mechanisms may underlie the behaviours and performance tested.


Assuntos
Adaptação Psicológica/fisiologia , Personalidade/fisiologia , Estresse Psicológico/fisiopatologia , Natação/fisiologia , Natação/psicologia , Tetraodontiformes/fisiologia , Adaptação Psicológica/efeitos dos fármacos , Animais , Animais Selvagens , Bahamas , Meio Ambiente , Abrigo para Animais , Hidrocortisona/administração & dosagem , Atividade Motora/fisiologia , Personalidade/efeitos dos fármacos , Psicotrópicos/administração & dosagem , Análise de Sobrevida
4.
Behav Processes ; 120: 87-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26327685

RESUMO

Through manipulations of sensory functions, researchers have evaluated the various mechanisms by which migratory fish, particularly in lotic systems, locate natal spawning grounds. Comparatively less work has occurred on the ways by which fish in lentic systems locate spawning sites, and more specifically, the ways by which displaced fish in these systems locate their broods post spawning. The primary goal of this research was to determine the sensory mechanisms used by nesting, male Largemouth Bass to navigate back to their brood following displacement. This was accomplished by comparing the ability of visually impaired, olfactory impaired and geomagnetically impaired individuals to return to their nests after a 200 m displacement, relative to control males. All treatments were designed to be temporary and harmless. We analyzed the data using a generalized linear mixed model, and found that the probability of an olfactory impaired individual returning to his nest within a given time interval was significantly lower than the probability of a geomagnetically impaired individual returning. Overall, it appears as though olfaction is the most important sensory mechanism used for homing in Largemouth Bass.


Assuntos
Bass/fisiologia , Comportamento Animal/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Animais , Masculino
5.
Conserv Physiol ; 3(1): cov031, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293716

RESUMO

One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA