Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mycorrhiza ; 17(6): 537-545, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17457622

RESUMO

Although it is usually admitted that arbuscular mycorrhizal (AM) fungi are key components in soil bio-functioning, little is known on the response of microbial functional diversity to AM inoculation. The aims of the present study were to determine the influence of Glomus intraradices inoculum densities on plant growth and soil microflora functional diversity in autoclaved soil or non-disinfected soil. Microbial diversity of soil treatments was assessed by measuring the patterns of in situ catabolic potential of microbial communities. The soil disinfection increased sorghum growth, but lowered catabolic evenness (4.8) compared to that recorded in the non-disinfected soil (6.5). G. intraradices inoculation induced a higher plant growth in the autoclaved soil than in the non-disinfected soil. This AM effect was positively related to inoculum density. Catabolic evenness and richness were positively correlated with the number of inoculated AM propagules in the autoclaved soil, but negatively correlated in the non-disinfected soil. In addition, after soil disinfection and AM inoculation, these microbial functionality indicators had higher values than in the autoclaved or in the non-disinfected soil without AM inoculation. These results are discussed in relation to the ecological influence of AM inoculation, with selected fungal strains and their associated microflora on native soil microbial activity.


Assuntos
Desinfecção/métodos , Ecossistema , Fungos/crescimento & desenvolvimento , Micorrizas/fisiologia , Microbiologia do Solo , Sorghum/microbiologia , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Ácidos Carboxílicos/metabolismo , Fungos/classificação , Fungos/metabolismo , Raízes de Plantas/microbiologia , Solo/análise , Sorghum/crescimento & desenvolvimento , Simbiose
2.
Mycorrhiza ; 17(3): 159-166, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17143615

RESUMO

Pterocarpus officinalis (Jacq.) seedlings inoculated with the arbuscular mycorrhizal fungus, Glomus intraradices, and the strain of Bradyrhizobium sp. (UAG 11A) were grown under stem-flooded or nonflooded conditions for 13 weeks after 4 weeks of nonflooded pretreatment under greenhouse conditions. Flooding of P. officinalis seedlings induced several morphological and physiological adaptive mechanisms, including formation of hypertrophied lenticels and aerenchyma tissue and production of adventitious roots on submerged portions of the stem. Flooding also resulted in an increase in collar diameter and leaf, stem, root, and total dry weights, regardless of inoculation. Under flooding, arbuscular mycorrhizas were well developed on root systems and adventitious roots compared with inoculated root systems under nonflooding condition. Arbuscular mycorrhizas made noteworthy contributions to the flood tolerance of P. officinalis seedlings by improving plant growth and P acquisition in leaves. We report in this study the novel occurrence of nodules connected vascularly to the stem and nodule and arbuscular mycorrhizas on adventitious roots of P. officinalis seedlings. Root nodules appeared more efficient fixing N(2) than stem nodules were. Beneficial effect of nodulation in terms of total dry weight and N acquisition in leaves was particularly noted in seedlings growing under flooding conditions. There was no additive effect of arbuscular mycorrhizas and nodulation on plant growth and nutrition in either flooding treatment. The results suggest that the development of adventitious roots, aerenchyma tissue, and hypertrophied lenticels may play a major role in flooded tolerance of P. officinalis symbiosis by increasing oxygen diffusion to the submerged part of the stem and root zone, and therefore contribute to plant growth and nutrition.


Assuntos
Micorrizas/crescimento & desenvolvimento , Pterocarpus/microbiologia , Aclimatação , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/fisiologia , Desastres , Micorrizas/fisiologia , Fixação de Nitrogênio , Pterocarpus/crescimento & desenvolvimento , Pterocarpus/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/fisiologia , Simbiose
3.
Mycorrhiza ; 17(1): 25-35, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17043894

RESUMO

Ambrosia artemisiifolia L. (common ragweed), an annual invasive plant, was introduced more than 100 years ago from North America to Europe. Like the majority of other invasive plants in Europe, it develops in open, disturbed areas such as fields, wastelands, roadsides, and riverbanks. Recently, arbuscular mycorrhizal fungi (AMF) have been suspected to play a role in some plant invasion processes. As the common ragweed is known to be colonized by AMF in its native range, the intensity of mycorrhizal root colonization was studied in 35 natural populations in eastern France. About 94% of the A. artemisiifolia populations sampled were mycorrhizal. Root colonization levels varied from 1 to 40% depending on the ecological sites, with lower levels for agricultural habitats and higher levels in disturbed sites, such as wastelands or roadsides. A subsequent greenhouse experiment showed positive impacts of AMF on the growth and development of A. artemisiifolia. It is proposed that the spread of this invasive plant species could be facilitated by AMF, underlining the need to integrate symbiotic interactions in future work on invasive plant processes.


Assuntos
Ambrosia/microbiologia , Ambrosia/fisiologia , Ecossistema , Micorrizas/metabolismo , França , Brotos de Planta , Dinâmica Populacional , Fatores de Tempo
4.
Mycorrhiza ; 16(8): 559-565, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17033816

RESUMO

The purpose of this study was to test the capacity of the ectomycorrhizal (ECM) fungus, Scleroderma bermudense, to alleviate saline stress in seagrape (Coccoloba uvifera L.) seedlings. Plants were grown over a range (0, 200, 350 and 500 mM) of NaCl levels for 12 weeks, after 4 weeks of non-saline pre-treatment under greenhouse conditions. Growth and mineral nutrition of the seagrape seedlings were stimulated by S. bermudense regardless of salt stress. Although ECM colonization was reduced with increasing NaCl levels, ECM dependency of seagrape seedlings increased. Tissues of ECM plants had significantly increased concentrations of P and K but lower Na and Cl concentrations than those of non-ECM plants. Higher K concentrations in the leaves of ECM plants suggested a higher osmoregulating capacity of these plants. Moreover, the water status of ECM plants was improved despite their higher evaporative leaf surface. The results suggest that the reduction in Na and Cl uptake together with a concomitant increase in P and K absorption and a higher water status in ECM plants may be important salt-alleviating mechanisms for seagrape seedlings growing in saline soils.


Assuntos
Micorrizas/metabolismo , Polygonaceae/efeitos dos fármacos , Polygonaceae/microbiologia , Cloreto de Sódio/farmacologia , Relação Dose-Resposta a Droga , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Polygonaceae/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia
5.
Mycorrhiza ; 13(2): 85-91, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12682830

RESUMO

The aims of this study were to test the effects of a mycorrhiza helper bacterium (MHB), Pseudomonas monteilii strain HR13 on the mycorrhization of (1) an Australian Acacia, A. holosericea, by several ectomycorrhizal fungi or one endomycorrhizal fungus Glomus intraradices, and (2) several Australian Acacia species by Pisolithus alba strain IR100 under glasshouse conditions. Bacterial inoculant HR13 significantly promoted ectomycorrhizal colonization for all the Acacia species, from 45.8% ( A. mangium) to 70.3% ( A. auriculiformis). A stimulating effect of HR13 on the ectomycorrhizal establishment was recorded with all the fungal isolates (strains of Pisolithus and Scleroderma). The same effect of bacteria on the frequency of endomycorrhizal colonization of A. holosericea seedlings by G. intraradices with vesicles and hyphae frequencies was recorded. The stimulation of saprophytic fungal growth by MHB is usually the main mechanism that could explain this bacterial effect on mycorrhizal establishment. MHB could stimulate the production of phenolic compounds such as hypaphorine and increase the aggressiveness of the fungal symbiont. However, no significant effect of MHB on fungal growth was recorded with Scleroderma isolates under axenic conditions but positive bacterial effects were observed with Pisolithus strains. From a practical viewpoint, it appears that MHB could stimulate the mycorrhizal colonization of Australian Acacia species with ectomycorrhizal or endomycorrhizal fungi, and could also facilitate controlled mycorrhization in nursery practices where Acacia species are grown for forestation purposes.


Assuntos
Acacia/microbiologia , Micorrizas/fisiologia , Pseudomonas/fisiologia , Simbiose/fisiologia , Acacia/fisiologia
6.
Appl Environ Microbiol ; 60(9): 3433-6, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16349392

RESUMO

The influences of seasons, plant age, and physicochemical properties of the soil on surface and deep biological arbuscular mycorrhizal fungus parameters associated with Acacia albida were assessed in different areas of Senegal. More indigenous arbuscular mycorrhizal propagules were found in the localities of the Sudano-Guinean zone (Djinaki and Kabrousse) than in those of the Sahelian zone (Louga and Diokoul), and species belonging to the genera Glomus, Gigaspora, Acaulospora, and Sclerocystis prevailed. The numbers of total and viable spores increased more during the rainy season than during the dry season (about 108% more total spores and 262% more viable spores). Similarly, both total and viable spores were more prevalent around young Acacia trees than old trees. However, the intensities of root colonization did not differ in each ecoclimatic zone.

7.
Appl Environ Microbiol ; 60(6): 1810-3, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16349273

RESUMO

Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors.

8.
World J Microbiol Biotechnol ; 7(3): 292-7, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-24425015

RESUMO

In recent years there have been many attempts to cultivate in vitro vesicular-arbuscular mycorrhizal (VAM) fungi which are obligate symbionts. Resting spores extracted from soils are often used as inoculum. Mycorrhizal root pieces are also used for inoculation but the role of intra-radical structures has not been clearly established. On agar medium vegetative mycelium was regenerated from individual intra-radical vesicles and from hyphae extracted by enzymatic maceration. After cell penetration, the mycelium probably accumulates substances which allow growth of VAM fungi in pure culture. When associated with tomato roots, this mycelium forms typical mycorrhizae. Encapsulation stabilized the biological properties of mycorrhizal roots and isolated vesicles. The immobilization also preserved the infectivity of the intra-radical hyphae and vesicles. After 25 years of exclusive utilization of resting spores as starting material for axenic and dual cultures of VAM fungi, it appears that intra-radical vesicles may be preferable propagules.

9.
Biotechnol Adv ; 2(1): 101-20, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-14543722

RESUMO

Mycorrhizal fungi associated with plant roots increase the absorption of nutrients, particularly phosphorus, and thus enhance the growth of crop plants and trees. Vesicular-arbuscular mycorrhizae (VAM) occur in approximately 90% of all vascular plants including most of the important agricultural species, whereas ectomycorrhizae are found in most of the economically important tree species of the temperate regions of the world, and in some tropical trees. These symbiotic associations are, therefore, important in crop and biomass production. For this reason they are receiving considerable attention in agriculture and forestry. Currently, VAM are utilized in fumigated soils, greenhouse crops, and in the reclamation of disturbed sites. Ectomycorrhizae are employed in the establishment of trees in nurseries, in reforestation programs, and in the production of containerized seedlings. Production of VAM and ectomycorrhiza inoculum for large scale projects is now feasible but many basic questions related to persistence of these fungi in field situations, competition with other microorganisms, and particularly the most efficient fungi to use for particular hosts remain largely unanswered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...