Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Genome Res ; 34(3): 426-440, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621828

RESUMO

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Assuntos
Genoma , Urocordados , Animais , Urocordados/genética , Urocordados/classificação , Evolução Molecular , Feminino , Filogenia , Masculino , Sintenia
3.
Genome Res ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961773

RESUMO

In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3' ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.

4.
Elife ; 112022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877175

RESUMO

Replisomes are multi-protein complexes that replicate genomes with remarkable speed and accuracy. Despite their importance, their dynamics is poorly characterized, especially in vivo. In this paper, we present an approach to infer the replisome dynamics from the DNA abundance distribution measured in a growing bacterial population. Our method is sensitive enough to detect subtle variations of the replisome speed along the genome. As an application, we experimentally measured the DNA abundance distribution in Escherichia coli populations growing at different temperatures using deep sequencing. We find that the average replisome speed increases nearly fivefold between 17 °C and 37 °C. Further, we observe wave-like variations of the replisome speed along the genome. These variations correlate with previously observed variations of the mutation rate, suggesting a common dynamical origin. Our approach has the potential to elucidate replication dynamics in E. coli mutants and in other bacterial species.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Cromossomos , DNA , Replicação do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética
5.
F1000Res ; 11: 240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350547

RESUMO

Background: Automation has increasingly become more commonplace in the research laboratory workspace. The introduction of articulated robotic arms allows the researcher more flexibility in the tasks a single piece of automated machinery can perform. We set out to incorporate automation in processing of genomic DNA organic extractions to increase throughput and limit researchers to the exposure of organic solvents. Methods: In order to automate the genome sequencing pipeline in our laboratory, we programmed a dual-arm anthropomorphic robot, the Robotic Biology Institute's Maholo LabDroid, to perform organic solvent-based genomic DNA extraction from cell lysates. To the best of our knowledge, this is the first time that automation of phenol-chloroform extraction has been reported. Results: We achieved routine extraction of high molecular weight genomic DNA (>100 kb) from diverse biological samples including algae cultured in sea water, bacteria, whole insects, and human cell lines. The results of pulse-field electrophoresis size analysis and the N50 sequencing metrics of reads obtained from Nanopore MinION runs verified the presence of intact DNA suitable for direct sequencing. Conclusions: We present the workflow that can be used to program similar robots and discuss the problems and solutions we encountered in developing the workflow. The protocol can be adapted to analogous methods such as RNA extraction, and there is ongoing work to incorporate further post-extraction steps such as library construction. This work shows the potential for automated robotic workflows to free molecular biological researchers from manual interventions in routine experimental work. A time-lapse movie of the entire automated run is included in this report.


Assuntos
Clorofórmio , Fenol , DNA/genética , Genômica , Humanos , Peso Molecular , Fenóis
7.
APL Bioeng ; 5(2): 026104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34027283

RESUMO

Interactions between the different liver cell types are critical to the maintenance or induction of their function in vitro. In this work, human-induced Pluripotent Stem Cells (hiPSCs)-derived Liver Sinusoidal Endothelial Cells (LSECs) and Hepatocytes-Like Cells (HLCs) were cultured and matured in a microfluidic environment. Both cell populations were differentiated in Petri dishes, detached, and inoculated in microfluidic biochips. In cocultures of both cell types, the tissue has exhibited a higher production of albumin (3.19 vs 5.31 µg/mL/106 cells in monocultures and cocultures) as well as a higher inducibility CYP450 over monocultures of HLCs. Tubular-like structures composed of LSECs and positive for the endothelial marker PECAM1, as well as a tissue more largely expressing Stabilin-2 were detected in cocultures only. In contrast, monocultures exhibited no network and less specific endothelial markers. The transcriptomic analysis did not reveal a marked difference between the profiles of both culture conditions. Nevertheless, the analysis allowed us to highlight different upstream regulators in cocultures (SP1, EBF1, and GATA3) and monocultures (PML, MECP2, and NRF1). In cocultures, the multi-omics dataset after 14 days of maturation in biochips has shown the activation of signaling related to hepatic maturation, angiogenesis, and tissue repair. In this condition, inflammatory signaling was also found to be reduced when compared to monocultures as illustrated by the activation of NFKB and by the detection of several cytokines involved in tissue injury in the latter. Finally, the extracted biological processes were discussed regarding the future development of a new generation of human in vitro hepatic models.

8.
Stem Cell Reports ; 16(4): 810-824, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711266

RESUMO

Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specification and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage to measure dynamic molecular changes at the single-cell resolution. Here, we multiplex and ectopically express 20 pro-neuronal transcription factors in human dermal fibroblasts and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions. Single-cell RNA-seq analysis reveals diverse and distinct neuronal subtypes, including reprogramming processes that strongly correlate with the developing brain. Gene mapping of 20 exogenous pro-neuronal transcription factors further unveiled key determinants responsible for neuronal lineage specification and a regulatory logic dictating neuronal diversification, including glutamatergic and cholinergic neurons. The multiplex scRNA-seq approach is a robust and scalable approach to elucidate lineage and cellular specification across various biological systems.


Assuntos
Neurônios/metabolismo , RNA-Seq , Análise de Célula Única , Neurônios Colinérgicos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glutamatos/metabolismo , Humanos , Recém-Nascido , Neurônios/citologia , Fator de Transcrição PAX6/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
9.
BMC Genomics ; 22(1): 222, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781200

RESUMO

BACKGROUND: The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65-70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. RESULTS: Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome. CONCLUSIONS: We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica's highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Urocordados , Animais , Genoma , Masculino , Telômero/genética , Urocordados/genética
10.
Biotechnol Bioeng ; 118(10): 3716-3732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404112

RESUMO

Maturation of human-induced pluripotent stem cells (hiPSCs)-derived hepatocytes-like cells (HLCs) toward a complete hepatocyte phenotype remains a challenge as primitiveness patterns are still commonly observed. In this study, we propose a modified differentiation protocol for those cells which includes a prematuration in Petri dishes and a maturation in microfluidic biochip. For the first time, a large range of biomolecular families has been extracted from the same sample to combine transcriptomic, proteomic, and metabolomic analysis. After integration, these datasets revealed specific molecular patterns and highlighted the hepatic regeneration profile in biochips. Overall, biochips exhibited processes of cell proliferation and inflammation (via TGFB1) coupled with anti-fibrotic signaling (via angiotensin 1-7, ATR-2, and MASR). Moreover, cultures in this condition displayed physiological lipid-carbohydrate homeostasis (notably via PPAR, cholesterol metabolism, and bile synthesis) coupled with cell respiration through advanced oxidative phosphorylation (through the overexpression of proteins from the third and fourth complex). The results presented provide an original overview of the complex mechanisms involved in liver regeneration using an advanced in vitro organ-on-chip technology.


Assuntos
Diferenciação Celular , Genômica , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Regeneração Hepática , Fígado/metabolismo , Proteômica , Humanos
11.
Sci Rep ; 10(1): 17991, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093512

RESUMO

Transcription of human papillomavirus (HPV) genes proceeds unidirectionally from multiple promoters. Direct profiling of transcription start sites (TSSs) by Cap Analysis Gene Expression (CAGE) is a powerful strategy for examining individual HPV promoter activity. The objective of this study was to evaluate alterations of viral promoter activity during infection using CAGE technology. We used CAGE-based sequencing of 46 primary cervical samples, and quantitatively evaluated TSS patterns in the HPV transcriptome at a single-nucleotide resolution. TSS patterns were classified into two types: early promoter-dominant type (Type A) and late promoter-dominant type (Type B). The Type B pattern was more frequently found in CIN1 and CIN2 lesions than in CIN3 and cancer samples. We detected transcriptomes from multiple HPV types in five samples. Interestingly, in each sample, the TSS patterns of both HPV types were the same. The viral gene expression pattern was determined by the differentiation status of the epithelial cells, regardless of HPV type. We performed unbiased analyses of TSSs across the HPV genome in clinical samples. Visualising TSS pattern dynamics, including TSS shifts, provides new insights into how HPV infection status relates to disease state.


Assuntos
Alphapapillomavirus/genética , Colo do Útero/patologia , Regulação Viral da Expressão Gênica , Infecções por Papillomavirus/complicações , Regiões Promotoras Genéticas , Capuzes de RNA/genética , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Alphapapillomavirus/isolamento & purificação , Estudos de Casos e Controles , Colo do Útero/virologia , Feminino , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Sítio de Iniciação de Transcrição , Transcrição Gênica , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Proteínas Virais/genética , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/virologia
12.
Dev Growth Differ ; 62(6): 450-461, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32677034

RESUMO

The larvacean Oikopleura dioica is a planktonic chordate and is a tunicate that belongs to the closest relatives to vertebrates. Its simple and transparent body, invariant embryonic cell lineages, and short life cycle of 5 days make it a promising model organism for the study of developmental biology. The genome browser OikoBase was established in 2013 using Norwegian O. dioica. However, genome information for other populations is not available, even though many researchers have studied local populations. In the present study, we sequenced using Illumina and PacBio RSII technologies the genome of O. dioica from a southwestern Japanese population that was cultured in our laboratory for 3 years. The genome of Japanese O. dioica was assembled into 576 scaffold sequences with a total length and N50 length of 56.6 and 1.5 Mb, respectively. A total of 18,743 gene models (transcript models) were predicted in the genome assembly, named OSKA2016. In addition, 19,277 non-redundant transcripts were assembled using RNA-seq data. The OSKA2016 has global sequence similarity of only 86.5% when compared with the OikoBase, highlighting the sequence difference between the two far distant O. dioica populations on the globe. The genome assembly, transcript assembly, and transcript models were incorporated into ANISEED (https://www.aniseed.cnrs.fr/) for genome browsing and BLAST searches. Mapping of reads obtained from male- or female-specific genome libraries yielded male-specific scaffolds in the OSKA2016 and revealed that over 2.6 Mb of sequence were included in the male-specific Y-region. The genome and transcriptome resources from two distinct populations will be useful datasets for developmental biology, evolutionary biology, and molecular ecology using this model organism.


Assuntos
Bases de Dados Genéticas , Modelos Genéticos , Urocordados/genética , Animais , Japão , Transcriptoma
13.
Differentiation ; 114: 36-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32563741

RESUMO

The capability to produce and maintain functional human adult hepatocytes remains one of the major challenges for the use of in-vitro models toward liver cell therapy and industrial drug-screening applications. Among the suggested strategies to solve this issue, the use of human-induced pluripotent stem cells (hiPSCs), differentiated toward hepatocyte-like cells (HLCs) is promising. In this work, we propose a 31-day long protocol, that includes a final 14-day long phase of oncostatin treatment, as opposed to a 7-day treatment which led to the formation of a hepatic tissue functional for CYP1A2, CYP2B6, CYP2C8, CYP2D6, and CYP3A4. The production of albumin, as well as bile acid metabolism and transport, were also detected. Transcriptome profile comparisons and liver transcription factors (TFs) motif dynamics revealed increased expression of typical hepatic markers such as HNF1A and of important metabolic markers like PPARA. The performed analysis has allowed for the extraction of potential targets and pathways which would allow enhanced hepatic maturation in-vitro. From this investigation, NRF1 and SP3 appeared as transcription factors of importance. Complex epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) patterns were also observed during the differentiation process. Moreover, whole transcriptome analysis highlighted a response typical of the one observed in liver regeneration and hepatocyte proliferation. While a complete maturation of hepatocytes was yet to be obtained, the results presented in this work provide new insights into the process of liver development and highlight potential targets aimed to improve in-vitro liver regeneration.


Assuntos
Diferenciação Celular/genética , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração Hepática , Fígado/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fator 1 Nuclear Respiratório/genética , Oncostatina M/farmacologia , Fator de Transcrição Sp3/genética , Transcriptoma/efeitos dos fármacos
14.
Biotechnol Prog ; 36(5): e3013, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32364651

RESUMO

The liver zonation is an important phenomenon characterized by a gradient of several functions along the liver acinus. However, this gradient remains difficult to reproduce in in-vitro conditions, making the obtention of an in-vitro method to recapitulate the liver zonation a challenging issue. In this study, we evaluated the spatial evolution of the transcriptome profile of human induced pluripotent stem cells (hiPSCs) differentiated toward hepatocytes-like cells (HLCs) phenotype in a microfluidic biochip environment. Cells collected at the inlet of the biochip, where the oxygen concentration is higher, were identified by the expression of genes involved in metabolic pathways related to cellular reorganization and cell proliferation. Cells collected in the middle and at the outlet of the biochips, where oxygen concentrations are lower, were characterized by the upregulation of genes involved in cellular detoxification processes (CYP450), PPAR signaling or arginine biosynthesis. A subset of 16 transcription factors (TFs) was extracted and identified as upstream regulators to HNF1A and PPARA. These TFs are also known as regulators to target genes engaged in the Wnt/ßcatenin pathway, in the TGFß/BMP/SMAD signaling, in the transition between epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET), in the homeostasis of lipids, bile acids and carbohydrates homeostasis, in drug metabolism, in the estrogen processing and in the oxidative stress response. Overall, the analysis allowed to confirm a partial zonation-like pattern in hiPSCs-derived HLCs in the microfluidic biochip environment. These results provide important insights into the reproduction of liver zonation in-vitro for a better understanding of the phenomenon.


Assuntos
Hepatócitos , Células-Tronco Pluripotentes Induzidas , Fígado , Técnicas Analíticas Microfluídicas/métodos , Transcriptoma/genética , Diferenciação Celular , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/metabolismo , Nanoestruturas/química , Engenharia Tecidual
15.
Nat Commun ; 11(1): 1018, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094342

RESUMO

Mammalian genomes encode tens of thousands of noncoding RNAs. Most noncoding transcripts exhibit nuclear localization and several have been shown to play a role in the regulation of gene expression and chromatin remodeling. To investigate the function of such RNAs, methods to massively map the genomic interacting sites of multiple transcripts have been developed; however, these methods have some limitations. Here, we introduce RNA And DNA Interacting Complexes Ligated and sequenced (RADICL-seq), a technology that maps genome-wide RNA-chromatin interactions in intact nuclei. RADICL-seq is a proximity ligation-based methodology that reduces the bias for nascent transcription, while increasing genomic coverage and unique mapping rate efficiency compared with existing methods. RADICL-seq identifies distinct patterns of genome occupancy for different classes of transcripts as well as cell type-specific RNA-chromatin interactions, and highlights the role of transcription in the establishment of chromatin structure.


Assuntos
Cromatina/metabolismo , Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Biblioteca Gênica , Camundongos , Células-Tronco Embrionárias Murinas , RNA não Traduzido/metabolismo , Transcrição Gênica
16.
Nucleic Acids Res ; 48(7): e37, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32025730

RESUMO

The development of complex methods in molecular biology is a laborious, costly, iterative and often intuition-bound process where optima are sought in a multidimensional parameter space through step-by-step optimizations. The difficulty of miniaturizing reactions under the microliter volumes usually handled in multiwell plates by robots, plus the cost of the experiments, limit the number of parameters and the dynamic ranges that can be explored. Nevertheless, because of non-linearities of the response of biochemical systems to their reagent concentrations, broad dynamic ranges are necessary. Here we use a high-performance nanoliter handling platform and computer generation of liquid transfer programs to explore in quadruplicates 648 combinations of 4 parameters of a biochemical reaction, the reverse-transcription, which lead us to uncover non-linear responses, parameter interactions and novel mechanistic insights. With the increased availability of computer-driven laboratory platforms for biotechnology, our results demonstrate the feasibility and advantage of methods development based on reproducible, computer-aided exhaustive characterization of biochemical systems.


Assuntos
Fenômenos Bioquímicos , Transcrição Reversa , Animais , Automação Laboratorial , Células HeLa , Humanos , Camundongos , Miniaturização , Reação em Cadeia da Polimerase , Análise de Célula Única
17.
Mol Omics ; 16(2): 138-146, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989141

RESUMO

Liver Sinusoidal Endothelial Cells (LSECs) are an important component of the liver as they compose the microvasculature which allows the supply of oxygen, blood, and nutrients. However, maintenance of these cells in vitro remains challenging as they tend to rapidly lose some of their characteristics such as fenestration or as their immortalized counterparts present poor characteristics. In this work, human induced pluripotent stem cells (hiPSCs) have been differentiated toward an LSEC phenotype. After differentiation, the RNA quantification allowed demonstration of high expression of specific vascular markers (CD31, CD144, and STAB2). Immunostaining performed on the cells was found to be positive for both Stabilin-1 and Stabilin-2. Whole transcriptome analysis performed with the nanoCAGE method further confirmed the overall vascular commitment of the cells. The gene expression profile revealed the upregulation of the APLN, LYVE1, VWF, ESAM and ANGPT2 genes while VEGFA appeared to be downregulated. Analysis of promoter motif activities highlighted several transcription factors (TFs) of interest in LSECs (IRF2, ERG, MEIS2, SPI1, IRF7, WRNIP1, HIC2, NFIX_NFIB, BATF, and PATZ1). Based on this investigation, we compiled the regulatory network involving the relevant TFs, their target genes as well as their related signaling pathways. The proposed hiPSC-derived LSEC model and its regulatory network were then confirmed by comparing the experimental data to primary human LSEC reference datasets. Thus, the presented model appears as a promising tool to generate more complex in vitro liver multi-cellular tissues.


Assuntos
Perfilação da Expressão Gênica/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Diferenciação Celular , Células Cultivadas , Células Endoteliais/química , Células Endoteliais/citologia , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/química , Fígado/química , Nanotecnologia , Sequenciamento do Exoma
18.
F1000Res ; 9: 780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33728042

RESUMO

Oikopleura dioica is a ubiquitous marine tunicate of biological interest due to features that include dioecious reproduction, short life cycle, and vertebrate-like dorsal notochord while possessing a relatively compact genome. The use of tunicates as model organisms, particularly with these characteristics, offers the advantage of facilitating studies in evolutionary development and furthering understanding of enduring attributes found in the more complex vertebrates. At present, we are undertaking an initiative to sequence the genomes of Oikopleura individuals in populations found among the seas surrounding the Ryukyu Islands in southern Japan. To facilitate and validate genome assemblies, karyotyping was employed to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. New imaging data of embryos and oocytes stained with two different antibodies were obtained; interpretation of these data lead us to conclude that the Okinawan Oikopleura dioica has three pairs of chromosomes, akin to previous results from genomic assemblies in Atlantic populations. The imaging data have been deposited to the open-access EBI BioImage Archive for reuse while additionally providing representative images of two commercially available anti-H3S28P antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy.


Assuntos
Centrômero/imunologia , Cromossomos/genética , Urocordados , Animais , Anticorpos Monoclonais , Feminino , Japão , Cariotipagem , Masculino , Coloração e Rotulagem , Urocordados/genética
19.
Mol Omics ; 15(6): 383-398, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612883

RESUMO

We investigated the human induced pluripotent stem cells (hiPSCs) during a sequential in vitro step-by-step differentiation into hepatocyte-like cells (HLCs) using nanoCAGE, a method for promoters, transcription factors, and transcriptome analysis. Specific gene clusters reflected the different steps of the hepatic differentiation. The proliferation step was characterized by a typical cell cycle and DNA replication. The hepatic endoderm and the HLC steps were marked by a common signature including cell interactions with extracellular matrix (ECM), lipoproteins and hepatic biomarkers (such as albumin and alpha-fetoprotein). The specific HLC profile was characterized by important transcription factors such as HIF1A, JUN, MAF, KLF6, BMP4 and with a larger expression of genes related to Wnt signaling, extracellular matrix, lipid metabolism, urea cycle, drugs, and solute transporters. HLC profile was also characterized by the activation of upstream regulators such as HNF1A, MEIS2, NFIX, WRNIP1, SP4, TAL1. Their regulatory networks highlighted HNF4a as a bridge and linked them to important processes such as EMT-MET transitions, ECM remodeling and liver development pathways (HNF3, PPARA signaling, iron metabolism) along the different steps of differentiation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/citologia , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Biomarcadores , Células Cultivadas , Biologia Computacional/métodos , Imunofluorescência , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Modelos Biológicos , Especificidade de Órgãos/genética , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo
20.
Biotechnol Bioeng ; 116(7): 1762-1776, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883676

RESUMO

In the present study, we evaluated the performance of different protocols for the hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) in microfluidic biochips. Strategies for complete and partial on-chip differentiation were tested. Unlike full on-chip differentiation, the transfer of iPSCs from Petri dishes to biochips during the differentiation process produced a heterogeneous tissue with enhanced hepatic features compared with control cultures in Petri dishes. The tissue in biochips was constituted of cells expressing either stabilin-1 or albumin, while no stabilin-1 was detected in controls. Functional analysis also revealed double the production rate for albumin in biochips (about 2,000 ng per day per 106 cells). Besides this, tissues obtained in biochips and controls exhibited the metabolism of a specific bile acid. Whole transcriptome analysis with nanoCAGE exhibited a differential expression of 302 genes between control and biochip cultures and a higher degree of hepatic differentiation in biochips, together with increased promoter motif activity for typical liver transcription factors such as estrogen related receptor alpha ( ESRRA), hepatic nuclear factor 1 ( HNF1A), hepatic nuclear factor 4 ( HNF4A), transcription factor 4 ( TCF4), and CCAAT enhancer binding protein alpha ( CEBPA). Gene set enrichment analysis identified several pathways related to the extracellular matrix, tissue reorganization, hypoxia-inducible transcription factor, and glycolysis that were differentially modulated in biochip cultures. However, the presence of CK19/ALB-positive cells and the ɑ-fetoprotein levels measured in the cultures still reflect primitive differentiation patterns. Overall, we identified key parameters for improved hepatic differentiation on-chip, including the maturation stage of hepatic progenitors, inoculation density, adhesion time, and perfusion flow rate. Optimization of these parameters further led to establish a protocol for reproducible differentiation of hiPSCs into hepatocyte-like cells in microfluidic biochips with significant improvements over Petri dish cultures.


Assuntos
Diferenciação Celular , Hepatócitos , Células-Tronco Pluripotentes Induzidas , Fígado , Técnicas Analíticas Microfluídicas , Nicho de Células-Tronco , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...