Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231936, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633347

RESUMO

Intracranial aneurysm is a pathology related to the deterioration of the arterial wall. This work is an essential part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool to facilitate the rupture risk assessment. It will lean on the link between the aneurysm shape clinically observed and a database derived from the in vivo mechanical characterization of aneurysms. To supply this database, a deformation device prototype of the arterial wall was developed. Its use coupled with medical imaging (spectral photon-counting computed tomography providing a spatial resolution down to 250 µm) is used to determine the in vivo mechanical properties of the wall based on the inverse analysis of the quantification of the wall deformation observed experimentally. This study presents the in vivo application of this original procedure to an animal model of aneurysm. The mechanical properties of the aneurysm wall identified were consistent with the literature, and the errors between the numerical and experimental results were less than 10%. Based on these parameters, this study allows the assessment of the aneurysm stress state for a known solicitation and points towards the definition of a rupture criterion.

2.
J Mech Behav Biomed Mater ; 153: 106469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402693

RESUMO

Intracranial aneurysm is a critical pathology related to the arterial wall deterioration. This work is an essential aspect of a large scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool regarding the rupture risk assessment. A machine learning algorithm links the aneurysm shape observed and a database of UIA clinical images associated with in vivo wall mechanical properties and rupture characterisation. The database constitution is derived from a device prototype coupled with medical imaging. It provides the mechanical characterisation of the aneurysm from the wall deformation obtained by inverse analysis based on the variation of luminal volume. Before performing in vivo tests of the device on small animals, a numerical model was built to quantify the device's impact on the aneurysm wall under natural blood flow conditions. As the clinician will never be able to precisely situate the device, several locations were considered. In preparation for the inverse analysis procedure, artery material laws of increasing complexity were studied (linear elastic, hyper elastic Fung-like). Considering all the device locations and material laws, the device induced relative displacements to the Systole peak (worst case scenario with the highest mechanical stimulus linked to the blood flow) ranging from 375 µm to 1.28 mm. The variation of luminal volume associated with the displacements was between 0.95 % and 4.3 % compared to the initial Systole volume of the aneurysm. Significant increase of the relative displacements and volume variations were found with the study of different cardiac cycle moments between the blood flow alone and the device application. For forthcoming animal model studies, Spectral Photon CT Counting, with a minimum spatial resolution of 250 µm, was selected as the clinical imaging technique. Based on this preliminary study, the displacements and associated volume variations (baseline for inverse analyse), should be observable and exploitable.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Hemodinâmica , Medição de Risco , Ruptura , Aneurisma Roto/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...