Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2308305120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079545

RESUMO

The motivation to reproduce is a potent natural drive, and the social behaviors that induce it can severely impact animal health and lifespan. Indeed, in Drosophila males, accelerated aging associated with reproduction arises not from the physical act of courtship or copulation but instead from the motivational drive to court and mate. To better understand the mechanisms underlying social effects on aging, we studied male choosiness for mates. We found that increased activity of insulin-producing cells (IPCs) of the fly brain potentiated choosiness without consistently affecting courtship activity. Surprisingly, this effect was not caused by insulins themselves, but instead by drosulfakinin (DSK), another neuropeptide produced in a subset of the IPCs, acting through one of the two DSK receptors, CCKLR-17D1. Activation of Dsk+ IPC neurons also decreased food consumption, while activation of Dsk+ neurons outside of IPCs affected neither choosiness nor feeding, suggesting an overlap between Dsk+neurons modulating choosiness and those influencing satiety. Broader activation of Dsk+ neurons (both within and outside of the IPCs) was required to rescue the detrimental effect of female pheromone exposure on male lifespan, as was the function of both DSK receptors. The same broad set of Dsk+ neurons was found to reinforce normally aversive feeding interactions, but only after exposure to female pheromones, suggesting that perception of the opposite sex gates rewarding properties of these neurons. We speculate that broad Dsk+ neuron activation is associated with states of satiety and social experience, which under stressful conditions is rewarding and beneficial for lifespan.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Masculino , Feminino , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Neuropeptídeos/química , Drosophila , Percepção Social , Envelhecimento , Comportamento Sexual Animal/fisiologia
2.
PLoS Biol ; 21(6): e3002149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310911

RESUMO

Sensory perception modulates aging, yet we know little about how. An understanding of the neuronal mechanisms through which animals orchestrate biological responses to relevant sensory inputs would provide insight into the control systems that may be important for modulating lifespan. Here, we provide new awareness into how the perception of dead conspecifics, or death perception, which elicits behavioral and physiological effects in many different species, affects lifespan in the fruit fly, Drosophila melanogaster. Previous work demonstrated that cohousing Drosophila with dead conspecifics decreases fat stores, reduces starvation resistance, and accelerates aging in a manner that requires both sight and the serotonin receptor 5-HT2A. In this manuscript, we demonstrate that a discrete, 5-HT2A-expressing neural population in the ellipsoid body (EB) of the Drosophila central complex, identified as R2/R4 neurons, acts as a rheostat and plays an important role in transducing sensory information about the presence of dead individuals to modulate lifespan. Expression of the insulin-responsive transcription factor foxo in R2/R4 neurons and insulin-like peptides dilp3 and dilp5, but not dilp2, are required, with the latter likely altered in median neurosecretory cells (MNCs) after R2/R4 neuronal activation. These data generate new insights into the neural underpinnings of how perceptive events may impact aging and physiology across taxa.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Envelhecimento , Neurônios , Insulina
3.
Elife ; 122023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326496

RESUMO

Hunger is a motivational drive that promotes feeding, and it can be generated by the physiological need to consume nutrients as well as the hedonic properties of food. Brain circuits and mechanisms that regulate feeding have been described, but which of these contribute to the generation of motive forces that drive feeding is unclear. Here, we describe our first efforts at behaviorally and neuronally distinguishing hedonic from homeostatic hunger states in Drosophila melanogaster and propose that this system can be used as a model to dissect the molecular mechanisms that underlie feeding motivation. We visually identify and quantify behaviors exhibited by hungry flies and find that increased feeding duration is a behavioral signature of hedonic feeding motivation. Using a genetically encoded marker of neuronal activity, we find that the mushroom body (MB) lobes are activated by hedonic food environments, and we use optogenetic inhibition to implicate a dopaminergic neuron cluster (protocerebral anterior medial [PAM]) to α'/ß' MB circuit in hedonic feeding motivation. The identification of discrete hunger states in flies and the development of behavioral assays to measure them offers a framework to begin dissecting the molecular and circuit mechanisms that generate motivational states in the brain.


Assuntos
Drosophila , Fome , Animais , Fome/fisiologia , Drosophila melanogaster/genética , Motivação , Neurônios Dopaminérgicos , Comportamento Alimentar/fisiologia
4.
Aging (Albany NY) ; 15(2): 396-420, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622279

RESUMO

Across taxa, sensory perception modulates aging in response to important ecological cues, including food, sex, and danger. The range of sensory cues involved, and their mechanism of action, are largely unknown. We therefore sought to better understand how one potential cue, that of light, impacts aging in Drosophila melanogaster. In accordance with recently published data, we found that flies lived significantly longer in constant darkness. Extended lifespan was not accompanied by behavioral changes that might indirectly slow aging such as activity, feeding, or fecundity, nor were circadian rhythms necessary for the effect. The lifespans of flies lacking eyes or photoreceptor neurons were unaffected by light kept at normal housing conditions, and transgenic activation of these same neurons was sufficient to phenocopy the effects of environmental light on lifespan. The relationship between light and lifespan was not correlated with its intensity, duration, nor the frequency of light-dark transitions. Furthermore, high-intensity light reduced lifespan in eyeless flies, indicating that the effects we observed were largely independent of the known, non-specific damaging effects associated with light. Our results suggest that much like other environmental cues, light may act as a sensory stimulus to modulate aging.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Animais Geneticamente Modificados
5.
Front Aging ; 3: 1068455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531741

RESUMO

The conserved neurotransmitter serotonin has been shown to be an important modulator of lifespan in specific nutritional contexts; however, it remained unclear how serotonin signaling influences lifespan under normal conditions. Here, we show that serotonin signaling through the 5-HT2A receptor influences lifespan, behavior, and physiology in Drosophila. Loss of the 5-HT2A receptor extends lifespan and induces a resistance to changes in dietary protein that are normally detrimental to lifespan. 5-HT2A -/- null mutant flies also display decreased protein feeding and protein content in the body. Therefore, serotonin signaling through receptor 5-HT2A is likely recruited to promote motivation for protein intake, and chronic reduction of protein-drive through loss of 5-HT2A signaling leads to a lower protein set-point adaptation, which influences physiology, decreases feeding, and increases lifespan. Our findings reveal insights into the mechanisms by which organisms physiologically adapt in response to perceived inability to satisfy demand.

6.
Elife ; 112022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525360

RESUMO

Several previous lines of research have suggested, indirectly, that mouse lifespan is particularly susceptible to endocrine or nutritional signals in the first few weeks of life, as tested by manipulations of litter size, growth hormone levels, or mutations with effects specifically on early-life growth rate. The pace of early development in mice can also be influenced by exposure of nursing and weanling mice to olfactory cues. In particular, odors of same-sex adult mice can in some circumstances delay maturation. We hypothesized that olfactory information might also have a sex-specific effect on lifespan, and we show here that the lifespan of female mice can be increased significantly by odors from adult females administered transiently, that is from 3 days until 60 days of age. Female lifespan was not modified by male odors, nor was male lifespan susceptible to odors from adults of either sex. Conditional deletion of the G protein Gαo in the olfactory system, which leads to impaired accessory olfactory system function and blunted reproductive priming responses to male odors in females, did not modify the effect of female odors on female lifespan. Our data provide support for the idea that very young mice are susceptible to influences that can have long-lasting effects on health maintenance in later life, and provide a potential example of lifespan extension by olfactory cues in mice.


The environment that animals are exposed to early in life can influence their subsequent rate of development, reproduction and aging. Experiments done in rodents have shown that social stimuli such as odours from the same sex or opposite sex individuals can affect the age at which sexual maturity is reached. Variations in age of sexual maturity are directly correlated with median lifespans of mice, with strong associations observed between later sexual maturity and longer lifespans in female mice. Detailed experiments exposing female or male mice to scents from mice of the same or another sex strongly suggest that growing up smelling the same sex can delay sexual maturity, while scents from another sex can hasten it. Interestingly, mice that lacked the cells that sense odours do not change their age of sexual maturity in response to scents from the opposite sex. This ability to steer one's developmental timeline depending on environmental cues may allow animals to prepare for future environments. But can it also influence an animal's lifespan? To answer this question, Garratt et al. observed the lifespans of female and male mice under different conditions. Mice were exposed to same-sex or other-sex odours, in the form of urine or soiled bedding, from day 3 to day 60 of their lives. The results showed that female mice exposed to odours from other females exhibited an increased lifespan, as compared to those not exposed to scents, while those exposed to odours from males did not show any change in their lifespan. In striking contrast, male mice exposed to odours from either sex showed no variation in their lifespans. The impairment of a particular type of odour-sensing neuron in mice did not change these results, making it likely that another neuron type is responsible for the changes in lifespan observed in the female mice. These experiments elegantly demonstrate that exposure to certain sensory information, in this case scent, can change how long mammals live. While similar effects involving smells are unlikely to influence lifespan in humans, it is possible that other types of sensory information affect our health and how we age.


Assuntos
Sinais (Psicologia) , Olfato , Camundongos , Feminino , Masculino , Animais , Olfato/fisiologia , Odorantes , Reprodução , Longevidade
7.
Nat Commun ; 13(1): 3271, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672307

RESUMO

An organism's ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction, acts in-part through a cell non-autonomous signaling pathway that is inhibited by the presence of attractive smells. Using an intestinal reporter for a key gene induced by dietary restriction but suppressed by attractive smells, we identify three compounds that block food odor effects in C. elegans, thereby increasing longevity as dietary restriction mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food odor. We further identify a chemosensory neuron that likely perceives food odor, an enteric neuron that signals through the serotonin receptor 5-HT1A/SER-4, and a dopaminergic neuron that signals through the dopamine receptor DRD2/DOP-3. Aspects of this pathway are conserved in D. melanogaster. Thus, blocking food odor signaling through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envelhecimento , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Longevidade/genética , Odorantes , Receptores Dopaminérgicos/metabolismo , Serotonina/metabolismo
8.
Sci Rep ; 11(1): 20044, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625601

RESUMO

The Drosophila model is used to investigate the effects of diet on physiology as well as the effects of genetic pathways, neural systems and environment on feeding behavior. We previously showed that Blue 1 works well as a dye tracer to track consumption of agar-based media in Drosophila in a method called Con-Ex. Here, we describe Orange 4 as a novel dye for use in Con-Ex studies that expands the utility of this method. Con-Ex experiments using Orange 4 detect the predicted effects of starvation, mating status, strain, and sex on feeding behavior in flies. Orange 4 is consumed and excreted into vials linearly with time in Con-Ex experiments, the number of replicates required to detect differences between groups when using Orange 4 is comparable to that for Blue 1, and excretion of the dye reflects the volume of consumed dye. In food preference studies using Orange 4 and Blue 1 as a dye pair, flies decreased their intake of food laced with the aversive tastants caffeine and NaCl as determined using Con-Ex or a more recently described modification called EX-Q. Our results indicate that Orange 4 is suitable for Con-Ex experiments, has comparable utility to Blue 1 in Con-Ex studies, and can be paired with Blue 1 to assess food preference via both Con-Ex and EX-Q.


Assuntos
Corantes/química , Drosophila melanogaster/metabolismo , Ingestão de Alimentos , Comportamento Alimentar , Preferências Alimentares , Indicadores e Reagentes/química , Animais , Feminino , Masculino
9.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34164657

RESUMO

Tissue-specific stem cells maintain tissue homeostasis by providing a continuous supply of differentiated cells throughout the life of organisms. Differentiated/differentiating cells can revert back to a stem cell identity via dedifferentiation to help maintain the stem cell pool beyond the lifetime of individual stem cells. Although dedifferentiation is important for maintaining the stem cell population, it is speculated that it underlies tumorigenesis. Therefore, this process must be tightly controlled. Here, we show that a translational regulator, me31B, plays a critical role in preventing excess dedifferentiation in the Drosophila male germline: in the absence of me31B, spermatogonia dedifferentiate into germline stem cells (GSCs) at a dramatically elevated frequency. Our results show that the excess dedifferentiation is likely due to misregulation of nos, a key regulator of germ cell identity and GSC maintenance. Taken together, our data reveal negative regulation of dedifferentiation to balance stem cell maintenance with differentiation.


Assuntos
RNA Helicases DEAD-box , Proteínas de Drosophila , Drosophila , Células Germinativas , Células-Tronco , Animais , Diferenciação Celular , RNA Helicases DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Homeostase , Masculino , Espermatogônias
10.
Commun Biol ; 4(1): 740, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131274

RESUMO

Aging arises from complex interactions among multiple biochemical products. Systems-level analyses of biological networks may provide insights into the causes and consequences of aging that evade single-gene studies. We have previously found that dietary choice is sufficient to modulate aging in the vinegar fly, Drosophila melanogaster. Here we show that nutrient choice influenced several measures of metabolic network integrity, including connectivity, community structure, and robustness. Importantly, these effects are mediated by serotonin signaling, as a mutation in serotonin receptor 2A (5-HT2A) eliminated the effects of nutrient choice. Changes in network structure were associated with organism resilience and increased susceptibility to genetic perturbation. Our data suggest that the behavioral or perceptual consequences of exposure to individual macronutrients, involving serotonin signaling through 5-HT2A, qualitatively change the state of metabolic networks throughout the organism from one that is highly connected and robust to one that is fragmented, fragile, and vulnerable to perturbations.


Assuntos
Envelhecimento/fisiologia , Drosophila melanogaster/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Comportamento Alimentar/fisiologia , Longevidade/fisiologia , Masculino , Redes e Vias Metabólicas/fisiologia , Metabolômica , Nutrientes , Receptor 5-HT2A de Serotonina/genética , Transdução de Sinais/fisiologia
11.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980491

RESUMO

Organisms make decisions based on the information they gather from their environment, the effects of which affect their fitness. Understanding how these interactions affect physiology may generate interventions that improve the length and quality of life. Here, we provide evidence that exposure to live yeast volatiles during starvation significantly extends survival, increases activity, and slows the rate of triacylglyceride (TAG) decline independent of canonical sensory perception. We demonstrate that ethanol (EtOH) is one of the active components in yeast volatiles that influences these phenotypes and that EtOH metabolites mediate dynamic mechanisms to promote Drosophila survival. Silencing R4d neurons reverses the ability of high EtOH concentrations to promote starvation survival, and their activation promotes EtOH metabolism. The transcription factor foxo promotes EtOH resistance, likely by protection from EtOH toxicity. Our results suggest that food-related cues recruit neural circuits and modulate stress signaling pathways to promote survival during starvation.


Assuntos
Proteínas de Drosophila , Inanição , Animais , Drosophila , Proteínas de Drosophila/genética , Etanol , Qualidade de Vida , Saccharomyces cerevisiae
12.
Elife ; 102021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33463526

RESUMO

It has been recognized for nearly a century that diet modulates aging. Despite early experiments suggesting that reduced caloric intake augmented lifespan, accumulating evidence indicates that other characteristics of the diet may be equally or more influential in modulating aging. We demonstrate that behavior, metabolism, and lifespan in Drosophila are affected by whether flies are provided a choice of different nutrients or a single, complete medium, largely independent of the amount of nutrients that are consumed. Meal choice elicits a rapid metabolic reprogramming that indicates a potentiation of TCA cycle and amino acid metabolism, which requires serotonin 2A receptor. Knockdown of glutamate dehydrogenase, a key TCA pathway component, abrogates the effect of dietary choice on lifespan. Our results reveal a mechanism of aging that applies in natural conditions, including our own, in which organisms continuously perceive and evaluate nutrient availability to promote fitness and well-being.


The foods we eat can affect our lifespan, but it is also possible that thinking about food may have effects on our health. Choosing what to eat is one of the main ways we think about food, and most animals, including the fruit fly Drosophila melanogaster, choose their foods. The effects of these choices can affect health via a chemical in the brain called serotonin. This chemical interacts with proteins called serotonin 2A receptors in the brain, which then likely primes the body to process nutrients. To understand how serotonin affected the lifespan and health of fruit flies, Lyu et al. compared flies that were offered a single food to those that could choose between several foods. The flies that had a choice of foods lived shorter lives and produced more serotonin, but these effects were reversed when Lyu et al. limited the amount of a protein called glutamate dehydrogenase, which helps cells process nutrients. These results suggest that choosing what we eat can impact lifespan, ageing and health. Human and fly brains share many similarities, but human brain chemistry is more complex, as is our experience of food. This work demonstrates that food choices can affect lifespan. More research into this phenomenon may shed further light onto how our thoughts and decision-making impact our health.


Assuntos
Envelhecimento , Drosophila melanogaster/fisiologia , Receptor 5-HT2A de Serotonina/genética , Transdução de Sinais , Animais , Dieta , Drosophila melanogaster/genética , Nutrientes/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo
13.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300870

RESUMO

As the demographics of the modern world skew older, understanding and mitigating the effects of aging is increasingly important within biomedical research. Recent studies in model organisms demonstrate that the aging process is frequently modified by an organism's ability to perceive and respond to changes in its environment. Many well-studied pathways that influence aging involve sensory cells, frequently neurons, that signal to peripheral tissues and promote survival during the presence of stress. Importantly, this activation of stress response pathways is often sufficient to improve health and longevity even in the absence of stress. Here, we review the current landscape of research highlighting the importance of cell non-autonomous signaling in modulating aging from C. elegans to mammals. We also discuss emerging concepts including retrograde signaling, approaches to mapping these networks, and development of potential therapeutics.


Assuntos
Envelhecimento Saudável/metabolismo , Longevidade , Transdução de Sinais , Adaptação Fisiológica , Fatores Etários , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Envelhecimento Saudável/genética , Homeostase , Humanos , Longevidade/genética , Modelos Animais , Modelos Biológicos , Transdução de Sinais/genética
14.
Sci Adv ; 6(40)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33008901

RESUMO

Aging is the dominant risk factor for most chronic diseases. Development of antiaging interventions offers the promise of preventing many such illnesses simultaneously. Cellular stress resistance is an evolutionarily conserved feature of longevity. Here, we identify compounds that induced resistance to the superoxide generator paraquat (PQ), the heavy metal cadmium (Cd), and the DNA alkylator methyl methanesulfonate (MMS). Some rescue compounds conferred resistance to a single stressor, while others provoked multiplex resistance. Induction of stress resistance in fibroblasts was predictive of longevity extension in a published large-scale longevity screen in Caenorhabditis elegans, although not in testing performed in worms and flies with a more restricted set of compounds. Transcriptomic analysis and genetic studies implicated Nrf2/SKN-1 signaling in stress resistance provided by two protective compounds, cardamonin and AEG 3482. Small molecules identified in this work may represent attractive tools to elucidate mechanisms of stress resistance in mammalian cells.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Longevidade/genética , Mamíferos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
15.
BMC Genomics ; 21(1): 341, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366330

RESUMO

BACKGROUND: Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS: We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS: This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.


Assuntos
Drosophila melanogaster/fisiologia , Peróxido de Hidrogênio/metabolismo , Metaboloma , Estresse Oxidativo/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Ácido Fólico/metabolismo , Genes de Insetos/genética , Variação Genética , Genoma de Inseto/genética , Genótipo , Glicogênio/metabolismo , Redes e Vias Metabólicas/genética , Herança Multifatorial , Fenótipo
16.
Addict Biol ; 25(4): e12779, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31169340

RESUMO

Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Dieta , Etanol/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Fermento Seco , Animais , Drosophila melanogaster , Feminino , Hipnóticos e Sedativos/farmacologia , Masculino , Saccharomyces cerevisiae , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo
17.
Annu Rev Physiol ; 82: 227-249, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31635526

RESUMO

Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Percepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Sinais (Psicologia) , Humanos , Transdução de Sinais/fisiologia
18.
Nat Metab ; 1(11): 1059-1073, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31742247

RESUMO

Dietary restriction (DR) during adulthood can greatly extend lifespan and improve metabolic health in diverse species. However, whether DR in mammals is still effective when applied for the first time at old age remains elusive. Here, we report results of a late-life DR switch experiment employing 800 mice, in which 24 months old female mice were switched from ad libitum (AL) to DR or vice versa. Strikingly, the switch from DR-to-AL acutely increases mortality, whereas the switch from AL-to-DR causes only a weak and gradual increase in survival, suggesting a memory of earlier nutrition. RNA-seq profiling in liver, brown (BAT) and white adipose tissue (WAT) demonstrate a largely refractory transcriptional and metabolic response to DR after AL feeding in fat tissue, particularly in WAT, and a proinflammatory signature in aged preadipocytes, which is prevented by chronic DR feeding. Our results provide evidence for a nutritional memory as a limiting factor for DR-induced longevity and metabolic remodeling of WAT in mammals.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Fenômenos Fisiológicos da Nutrição , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Fígado/metabolismo , Camundongos
19.
Aging Cell ; 18(5): e13005, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31334599

RESUMO

Cognitive function declines with age throughout the animal kingdom, and increasing evidence shows that disruption of the proteasome system contributes to this deterioration. The proteasome has important roles in multiple aspects of the nervous system, including synapse function and plasticity, as well as preventing cell death and senescence. Previous studies have shown neuronal proteasome depletion and inhibition can result in neurodegeneration and cognitive deficits, but it is unclear if this pathway is a driver of neurodegeneration and cognitive decline in aging. We report that overexpression of the proteasome ß5 subunit enhances proteasome assembly and function. Significantly, we go on to show that neuronal-specific proteasome augmentation slows age-related declines in measures of learning, memory, and circadian rhythmicity. Surprisingly, neuronal-specific augmentation of proteasome function also produces a robust increase of lifespan in Drosophila melanogaster. Our findings appear specific to the nervous system; ubiquitous proteasome overexpression increases oxidative stress resistance but does not impact lifespan and is detrimental to some healthspan measures. These findings demonstrate a key role of the proteasome system in brain aging.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/prevenção & controle , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Longevidade , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Disfunção Cognitiva/enzimologia , Drosophila melanogaster/citologia
20.
Nat Commun ; 10(1): 2365, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147540

RESUMO

Sensory perception modulates health and aging across taxa. Understanding the nature of relevant cues and the mechanisms underlying their action may lead to novel interventions that improve the length and quality of life. We found that in the vinegar fly, Drosophila melanogaster, exposure to dead conspecifics in the environment induced cues that were aversive to other flies, modulated physiology, and impaired longevity. The effects of exposure to dead conspecifics on aversiveness and lifespan required visual and olfactory function in the exposed flies. Furthermore, the sight of dead flies was sufficient to produce aversive cues and to induce changes in the head metabolome. Genetic and pharmacologic attenuation of serotonergic signaling eliminated the effects of exposure on aversiveness and lifespan. Our results indicate that Drosophila have an ability to perceive dead conspecifics in their environment and suggest conserved mechanistic links between neural state, health, and aging; the roots of which might be unearthed using invertebrate model systems.


Assuntos
Sinais (Psicologia) , Morte , Longevidade , Percepção Olfatória , Serotonina/metabolismo , Percepção Visual , Animais , Dióxido de Carbono/metabolismo , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Drosophila simulans , Metaboloma , Fosfolipase C beta/genética , Receptores Odorantes/genética , Transdução de Sinais , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...