Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(6): e0233956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542027

RESUMO

BACKGROUND: Surveying the scientific literature is an important part of early drug discovery; and with the ever-increasing amount of biomedical publications it is imperative to focus on the most interesting articles. Here we present a project that highlights new understanding (e.g. recently discovered modes of action) and identifies potential drug targets, via a novel, data-driven text mining approach to score type 2 diabetes (T2D) relevance. We focused on monitoring trends and jumps in T2D relevance to help us be timely informed of important breakthroughs. METHODS: We extracted over 7 million n-grams from PubMed abstracts and then clustered around 240,000 linked to T2D into almost 50,000 T2D relevant 'semantic concepts'. To score papers, we weighted the concepts based on co-mentioning with core T2D proteins. A protein's T2D relevance was determined by combining the scores of the papers mentioning it in the five preceding years. Each week all proteins were ranked according to their T2D relevance. Furthermore, the historical distribution of changes in rank from one week to the next was used to calculate the significance of a change in rank by T2D relevance for each protein. RESULTS: We show that T2D relevant papers, even those not mentioning T2D explicitly, were prioritised by relevant semantic concepts. Well known T2D proteins were therefore enriched among the top scoring proteins. Our 'high jumpers' identified important past developments in the apprehension of how certain key proteins relate to T2D, indicating that our method will make us aware of future breakthroughs. In summary, this project facilitated keeping up with current T2D research by repeatedly providing short lists of potential novel targets into our early drug discovery pipeline.


Assuntos
Mineração de Dados/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas/métodos , Algoritmos , Humanos , Proteínas/metabolismo , Semântica
2.
J Cheminform ; 11(1): 19, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850898

RESUMO

Most BioCreative tasks to date have focused on assessing the quality of text-mining annotations in terms of precision and recall. Interoperability, speed, and stability are, however, other important factors to consider for practical applications of text mining. For about a decade, we have run named entity recognition (NER) web services, which are designed to be efficient, implemented using a multi-threaded queueing system to robustly handle many simultaneous requests, and hosted at a supercomputer facility. To participate in this new task, we extended the existing NER tagging service with support for the BeCalm API. The tagger suffered no downtime during the challenge and, as in earlier tests, proved to be highly efficient, consistently processing requests of 5000 abstracts in less than half a minute. In fact, the majority of this time was spent not on the NER task but rather on retrieving the document texts from the challenge servers. The latter was found to be the main bottleneck even when hosting a copy of the tagging service on a Raspberry Pi 3, showing that local document storage or caching would be desirable features to include in future revisions of the API standard.

3.
PeerJ ; 3: e1054, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157623

RESUMO

For tissues to carry out their functions, they rely on the right proteins to be present. Several high-throughput technologies have been used to map out which proteins are expressed in which tissues; however, the data have not previously been systematically compared and integrated. We present a comprehensive evaluation of tissue expression data from a variety of experimental techniques and show that these agree surprisingly well with each other and with results from literature curation and text mining. We further found that most datasets support the assumed but not demonstrated distinction between tissue-specific and ubiquitous expression. By developing comparable confidence scores for all types of evidence, we show that it is possible to improve both quality and coverage by combining the datasets. To facilitate use and visualization of our work, we have developed the TISSUES resource (http://tissues.jensenlab.org), which makes all the scored and integrated data available through a single user-friendly web interface.

4.
Mol Cell Proteomics ; 14(3): 658-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576301

RESUMO

HLA class I molecules reflect the health state of cells to cytotoxic T cells by presenting a repertoire of endogenously derived peptides. However, the extent to which the proteome shapes the peptidome is still largely unknown. Here we present a high-throughput mass-spectrometry-based workflow that allows stringent and accurate identification of thousands of such peptides and direct determination of binding motifs. Applying the workflow to seven cancer cell lines and primary cells, yielded more than 22,000 unique HLA peptides across different allelic binding specificities. By computing a score representing the HLA-I sampling density, we show a strong link between protein abundance and HLA-presentation (p < 0.0001). When analyzing overpresented proteins - those with at least fivefold higher density score than expected for their abundance - we noticed that they are degraded almost 3 h faster than similar but nonpresented proteins (top 20% abundance class; median half-life 20.8h versus 23.6h, p < 0.0001). This validates protein degradation as an important factor for HLA presentation. Ribosomal, mitochondrial respiratory chain, and nucleosomal proteins are particularly well presented. Taking a set of proteins associated with cancer, we compared the predicted immunogenicity of previously validated T-cell epitopes with other peptides from these proteins in our data set. The validated epitopes indeed tend to have higher immunogenic scores than the other detected HLA peptides. Remarkably, we identified five mutated peptides from a human colon cancer cell line, which have very recently been predicted to be HLA-I binders. Altogether, we demonstrate the usefulness of combining MS-analysis with immunogenesis prediction for identifying, ranking, and selecting peptides for therapeutic use.


Assuntos
Apresentação de Antígeno , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Espectrometria de Massas/métodos , Peptídeos/isolamento & purificação , Proteômica/métodos , Linhagem Celular Tumoral , Células Cultivadas , Epitopos de Linfócito T/metabolismo , Células HCT116 , Humanos , Neoplasias/imunologia , Peptídeos/imunologia , Proteoma/imunologia , Proteoma/isolamento & purificação
5.
Methods ; 74: 83-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25484339

RESUMO

Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download.


Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas , Doença/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Bases de Dados Genéticas/estatística & dados numéricos , Humanos
6.
Database (Oxford) ; 2014: bau012, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24573882

RESUMO

Information on protein subcellular localization is important to understand the cellular functions of proteins. Currently, such information is manually curated from the literature, obtained from high-throughput microscopy-based screens and predicted from primary sequence. To get a comprehensive view of the localization of a protein, it is thus necessary to consult multiple databases and prediction tools. To address this, we present the COMPARTMENTS resource, which integrates all sources listed above as well as the results of automatic text mining. The resource is automatically kept up to date with source databases, and all localization evidence is mapped onto common protein identifiers and Gene Ontology terms. We further assign confidence scores to the localization evidence to facilitate comparison of different types and sources of evidence. To further improve the comparability, we assign confidence scores based on the type and source of the localization evidence. Finally, we visualize the unified localization evidence for a protein on a schematic cell to provide a simple overview. Database URL: http://compartments.jensenlab.org.


Assuntos
Compartimento Celular , Bases de Dados de Proteínas , Proteínas/metabolismo , Mineração de Dados , Humanos , Internet , Frações Subcelulares/metabolismo
7.
Bioinformatics ; 30(3): 392-7, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24273243

RESUMO

MOTIVATION: MicroRNAs (miRNAs) are a highly abundant class of non-coding RNA genes involved in cellular regulation and thus also diseases. Despite miRNAs being important disease factors, miRNA-disease associations remain low in number and of variable reliability. Furthermore, existing databases and prediction methods do not explicitly facilitate forming hypotheses about the possible molecular causes of the association, thereby making the path to experimental follow-up longer. RESULTS: Here we present miRPD in which miRNA-Protein-Disease associations are explicitly inferred. Besides linking miRNAs to diseases, it directly suggests the underlying proteins involved, which can be used to form hypotheses that can be experimentally tested. The inference of miRNAs and diseases is made by coupling known and predicted miRNA-protein associations with protein-disease associations text mined from the literature. We present scoring schemes that allow us to rank miRNA-disease associations inferred from both curated and predicted miRNA targets by reliability and thereby to create high- and medium-confidence sets of associations. Analyzing these, we find statistically significant enrichment for proteins involved in pathways related to cancer and type I diabetes mellitus, suggesting either a literature bias or a genuine biological trend. We show by example how the associations can be used to extract proteins for disease hypothesis. AVAILABILITY AND IMPLEMENTATION: All datasets, software and a searchable Web site are available at http://mirpd.jensenlab.org.


Assuntos
Doença/genética , MicroRNAs/metabolismo , Proteínas/metabolismo , Software , Diabetes Mellitus/genética , Humanos
8.
Nucleic Acids Res ; 42(Database issue): D401-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24293645

RESUMO

STITCH is a database of protein-chemical interactions that integrates many sources of experimental and manually curated evidence with text-mining information and interaction predictions. Available at http://stitch.embl.de, the resulting interaction network includes 390 000 chemicals and 3.6 million proteins from 1133 organisms. Compared with the previous version, the number of high-confidence protein-chemical interactions in human has increased by 45%, to 367 000. In this version, we added features for users to upload their own data to STITCH in the form of internal identifiers, chemical structures or quantitative data. For example, a user can now upload a spreadsheet with screening hits to easily check which interactions are already known. To increase the coverage of STITCH, we expanded the text mining to include full-text articles and added a prediction method based on chemical structures. We further changed our scheme for transferring interactions between species to rely on orthology rather than protein similarity. This improves the performance within protein families, where scores are now transferred only to orthologous proteins, but not to paralogous proteins. STITCH can be accessed with a web-interface, an API and downloadable files.


Assuntos
Bases de Dados de Proteínas , Proteínas/metabolismo , Animais , Mineração de Dados , Humanos , Internet , Camundongos , Preparações Farmacêuticas/química , Mapeamento de Interação de Proteínas , Proteínas/química , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...