Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Med Decis Making ; : 272989X241249182, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738534

RESUMO

BACKGROUND: Recommendations regarding personalized lung cancer screening are being informed by natural-history modeling. Therefore, understanding how differences in model assumptions affect model-based personalized screening recommendations is essential. DESIGN: Five Cancer Intervention and Surveillance Modeling Network (CISNET) models were evaluated. Lung cancer incidence, mortality, and stage distributions were compared across 4 theoretical scenarios to assess model assumptions regarding 1) sojourn times, 2) stage-specific sensitivities, and 3) screening-induced lung cancer mortality reductions. Analyses were stratified by sex and smoking behavior. RESULTS: Most cancers had sojourn times <5 y (model range [MR]; lowest to highest value across models: 83.5%-98.7% of cancers). However, cancer aggressiveness still varied across models, as demonstrated by differences in proportions of cancers with sojourn times <2 y (MR: 42.5%-64.6%) and 2 to 4 y (MR: 28.8%-43.6%). Stage-specific sensitivity varied, particularly for stage I (MR: 31.3%-91.5%). Screening reduced stage IV incidence in most models for 1 y postscreening; increased sensitivity prolonged this period to 2 to 5 y. Screening-induced lung cancer mortality reductions among lung cancers detected at screening ranged widely (MR: 14.6%-48.9%), demonstrating variations in modeled treatment effectiveness of screen-detected cases. All models assumed longer sojourn times and greater screening-induced lung cancer mortality reductions for women. Models assuming differences in cancer epidemiology by smoking behaviors assumed shorter sojourn times and lower screening-induced lung cancer mortality reductions for heavy smokers. CONCLUSIONS: Model-based personalized screening recommendations are primarily driven by assumptions regarding sojourn times (favoring longer intervals for groups more likely to develop less aggressive cancers), sensitivity (higher sensitivities favoring longer intervals), and screening-induced mortality reductions (greater reductions favoring shorter intervals). IMPLICATIONS: Models suggest longer screening intervals may be feasible and benefits may be greater for women and light smokers. HIGHLIGHTS: Natural-history models are increasingly used to inform lung cancer screening, but causes for variations between models are difficult to assess.This is the first evaluation of these causes and their impact on personalized screening recommendations through easily interpretable metrics.Models vary regarding sojourn times, stage-specific sensitivities, and screening-induced lung cancer mortality reductions.Model outcomes were similar in predicting greater screening benefits for women and potentially light smokers. Longer screening intervals may be feasible for women and light smokers.

3.
JAMA ; 331(22): 1947-1960, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38687505

RESUMO

Importance: The effects of breast cancer incidence changes and advances in screening and treatment on outcomes of different screening strategies are not well known. Objective: To estimate outcomes of various mammography screening strategies. Design, Setting, and Population: Comparison of outcomes using 6 Cancer Intervention and Surveillance Modeling Network (CISNET) models and national data on breast cancer incidence, mammography performance, treatment effects, and other-cause mortality in US women without previous cancer diagnoses. Exposures: Thirty-six screening strategies with varying start ages (40, 45, 50 years) and stop ages (74, 79 years) with digital mammography or digital breast tomosynthesis (DBT) annually, biennially, or a combination of intervals. Strategies were evaluated for all women and for Black women, assuming 100% screening adherence and "real-world" treatment. Main Outcomes and Measures: Estimated lifetime benefits (breast cancer deaths averted, percent reduction in breast cancer mortality, life-years gained), harms (false-positive recalls, benign biopsies, overdiagnosis), and number of mammograms per 1000 women. Results: Biennial screening with DBT starting at age 40, 45, or 50 years until age 74 years averted a median of 8.2, 7.5, or 6.7 breast cancer deaths per 1000 women screened, respectively, vs no screening. Biennial DBT screening at age 40 to 74 years (vs no screening) was associated with a 30.0% breast cancer mortality reduction, 1376 false-positive recalls, and 14 overdiagnosed cases per 1000 women screened. Digital mammography screening benefits were similar to those for DBT but had more false-positive recalls. Annual screening increased benefits but resulted in more false-positive recalls and overdiagnosed cases. Benefit-to-harm ratios of continuing screening until age 79 years were similar or superior to stopping at age 74. In all strategies, women with higher-than-average breast cancer risk, higher breast density, and lower comorbidity level experienced greater screening benefits than other groups. Annual screening of Black women from age 40 to 49 years with biennial screening thereafter reduced breast cancer mortality disparities while maintaining similar benefit-to-harm trade-offs as for all women. Conclusions: This modeling analysis suggests that biennial mammography screening starting at age 40 years reduces breast cancer mortality and increases life-years gained per mammogram. More intensive screening for women with greater risk of breast cancer diagnosis or death can maintain similar benefit-to-harm trade-offs and reduce mortality disparities.


Assuntos
Neoplasias da Mama , Detecção Precoce de Câncer , Mamografia , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Fatores Etários , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/diagnóstico por imagem , Técnicas de Apoio para a Decisão , Reações Falso-Positivas , Incidência , Programas de Rastreamento , Uso Excessivo dos Serviços de Saúde , Guias de Prática Clínica como Assunto , Estados Unidos/epidemiologia , Modelos Estatísticos
4.
JAMA ; 331(3): 233-241, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227031

RESUMO

Importance: Breast cancer mortality in the US declined between 1975 and 2019. The association of changes in metastatic breast cancer treatment with improved breast cancer mortality is unclear. Objective: To simulate the relative associations of breast cancer screening, treatment of stage I to III breast cancer, and treatment of metastatic breast cancer with improved breast cancer mortality. Design, Setting, and Participants: Using aggregated observational and clinical trial data on the dissemination and effects of screening and treatment, 4 Cancer Intervention and Surveillance Modeling Network (CISNET) models simulated US breast cancer mortality rates. Death due to breast cancer, overall and by estrogen receptor and ERBB2 (formerly HER2) status, among women aged 30 to 79 years in the US from 1975 to 2019 was simulated. Exposures: Screening mammography, treatment of stage I to III breast cancer, and treatment of metastatic breast cancer. Main Outcomes and Measures: Model-estimated age-adjusted breast cancer mortality rate associated with screening, stage I to III treatment, and metastatic treatment relative to the absence of these exposures was assessed, as was model-estimated median survival after breast cancer metastatic recurrence. Results: The breast cancer mortality rate in the US (age adjusted) was 48/100 000 women in 1975 and 27/100 000 women in 2019. In 2019, the combination of screening, stage I to III treatment, and metastatic treatment was associated with a 58% reduction (model range, 55%-61%) in breast cancer mortality. Of this reduction, 29% (model range, 19%-33%) was associated with treatment of metastatic breast cancer, 47% (model range, 35%-60%) with treatment of stage I to III breast cancer, and 25% (model range, 21%-33%) with mammography screening. Based on simulations, the greatest change in survival after metastatic recurrence occurred between 2000 and 2019, from 1.9 years (model range, 1.0-2.7 years) to 3.2 years (model range, 2.0-4.9 years). Median survival for estrogen receptor (ER)-positive/ERBB2-positive breast cancer improved by 2.5 years (model range, 2.0-3.4 years), whereas median survival for ER-/ERBB2- breast cancer improved by 0.5 years (model range, 0.3-0.8 years). Conclusions and Relevance: According to 4 simulation models, breast cancer screening and treatment in 2019 were associated with a 58% reduction in US breast cancer mortality compared with interventions in 1975. Simulations suggested that treatment for stage I to III breast cancer was associated with approximately 47% of the mortality reduction, whereas treatment for metastatic breast cancer was associated with 29% of the reduction and screening with 25% of the reduction.


Assuntos
Neoplasias da Mama , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Mama/diagnóstico por imagem , Mama/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Detecção Precoce de Câncer , História do Século XX , História do Século XXI , Mamografia/métodos , Mortalidade/tendências , Receptores de Estrogênio/metabolismo , Estados Unidos/epidemiologia , Receptor ErbB-2/metabolismo
5.
Sci Rep ; 13(1): 21781, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065965

RESUMO

Malignant pleural effusions (MPEs) can be utilized as liquid biopsy for phenotyping malignant cells and for precision immunotherapy, yet MPEs are inadequately studied at the single-cell proteomic level. Here we leverage mass cytometry to interrogate immune and epithelial cellular profiles of primary tumors and pleural effusions (PEs) from early and late-stage non-small cell lung cancer (NSCLC) patients, with the goal of assessing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in patient specimens. By using the EMT-MET reference map PHENOSTAMP, we observe a variety of EMT states in cytokeratin positive (CK+) cells, and report for the first time MET-enriched CK+ cells in MPEs. We show that these states may be relevant to disease stage and therapy response. Furthermore, we found that the fraction of CD33+ myeloid cells in PEs was positively correlated to the fraction of CK+ cells. Longitudinal analysis of MPEs drawn 2 months apart from a patient undergoing therapy, revealed that CK+ cells acquired heterogeneous EMT features during treatment. We present this work as a feasibility study that justifies deeper characterization of EMT and MET states in malignant cells found in PEs as a promising clinical platform to better evaluate disease progression and treatment response at a personalized level.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteômica , Transição Epitelial-Mesenquimal/fisiologia , Derrame Pleural Maligno/tratamento farmacológico , Biópsia Líquida
6.
Genome Med ; 15(1): 98, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978395

RESUMO

BACKGROUND: The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS: We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS: Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS: In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.


Assuntos
Genes cdc , Neoplasias de Cabeça e Pescoço , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias de Cabeça e Pescoço/genética , Metástase Linfática , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
7.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745466

RESUMO

Computational frameworks to quantify and compare microenvironment spatial features of in-vitro patient-derived models and clinical specimens are needed. Here, we acquired and analysed multiplexed immunofluorescence images of human lung adenocarcinoma (LUAD) alongside tumour-stroma assembloids constructed with organoids and fibroblasts harvested from the leading edge (Tumour-Adjacent Fibroblasts;TAFs) or core (Tumour Core Fibroblasts;TCFs) of human LUAD. We introduce the concept of the "colocatome" as a spatial -omic dimension to catalogue all proximate and distant colocalisations between malignant and fibroblast subpopulations in both the assembloids and clinical specimens. The colocatome expands upon the colocalisation quotient (CLQ) through a nomalisation strategy that involves permutation analysis and thereby allows comparisons of CLQs under different conditions. Using colocatome analysis, we report that both TAFs and TCFs protected cancer cells from targeted oncogene treatment by uniquely reorganising the tumour-stroma cytoarchitecture, rather than by promoting cellular heterogeneity or selection. Moreover, we show that the assembloids' colocatome recapitulates the tumour-stroma cytoarchitecture defining the tumour microenvironment of LUAD clinical samples and thereby can serve as a functional spatial readout to guide translational discoveries.

8.
Nature ; 619(7970): 572-584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468586

RESUMO

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Assuntos
Intestinos , Análise de Célula Única , Humanos , Diferenciação Celular/genética , Cromatina/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , Intestinos/citologia , Intestinos/imunologia , Análise da Expressão Gênica de Célula Única
9.
Nature ; 619(7971): 851-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468633

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Neoplasias Pulmonares , Pulmão , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos Knockout , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Alelos , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Progressão da Doença , Linhagem da Célula , Regeneração , Autorrenovação Celular
10.
Ann Intern Med ; 176(3): 320-332, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36745885

RESUMO

BACKGROUND: In their 2021 lung cancer screening recommendation update, the U.S. Preventive Services Task Force (USPSTF) evaluated strategies that select people based on their personal lung cancer risk (risk model-based strategies), highlighting the need for further research on the benefits and harms of risk model-based screening. OBJECTIVE: To evaluate and compare the cost-effectiveness of risk model-based lung cancer screening strategies versus the USPSTF recommendation and to explore optimal risk thresholds. DESIGN: Comparative modeling analysis. DATA SOURCES: National Lung Screening Trial; Surveillance, Epidemiology, and End Results program; U.S. Smoking History Generator. TARGET POPULATION: 1960 U.S. birth cohort. TIME HORIZON: 45 years. PERSPECTIVE: U.S. health care sector. INTERVENTION: Annual low-dose computed tomography in risk model-based strategies that start screening at age 50 or 55 years, stop screening at age 80 years, with 6-year risk thresholds between 0.5% and 2.2% using the PLCOm2012 model. OUTCOME MEASURES: Incremental cost-effectiveness ratio (ICER) and cost-effectiveness efficiency frontier connecting strategies with the highest health benefit at a given cost. RESULTS OF BASE-CASE ANALYSIS: Risk model-based screening strategies were more cost-effective than the USPSTF recommendation and exclusively comprised the cost-effectiveness efficiency frontier. Among the strategies on the efficiency frontier, those with a 6-year risk threshold of 1.2% or greater were cost-effective with an ICER less than $100 000 per quality-adjusted life-year (QALY). Specifically, the strategy with a 1.2% risk threshold had an ICER of $94 659 (model range, $72 639 to $156 774), yielding more QALYs for less cost than the USPSTF recommendation, while having a similar level of screening coverage (person ever-screened 21.7% vs. USPSTF's 22.6%). RESULTS OF SENSITIVITY ANALYSES: Risk model-based strategies were robustly more cost-effective than the 2021 USPSTF recommendation under varying modeling assumptions. LIMITATION: Risk models were restricted to age, sex, and smoking-related risk predictors. CONCLUSION: Risk model-based screening is more cost-effective than the USPSTF recommendation, thus warranting further consideration. PRIMARY FUNDING SOURCE: National Cancer Institute (NCI).


Assuntos
Neoplasias Pulmonares , Humanos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Neoplasias Pulmonares/diagnóstico por imagem , Análise de Custo-Efetividade , Detecção Precoce de Câncer/métodos , Análise Custo-Benefício , Pulmão , Anos de Vida Ajustados por Qualidade de Vida , Programas de Rastreamento/métodos
11.
Nat Med ; 28(9): 1860-1871, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097223

RESUMO

Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4+Helios+ CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (TReg) cells. Validation cohort analysis upheld the link between higher CAR TReg cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR TReg cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans.


Assuntos
Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Lactato Desidrogenases , Síndromes Neurotóxicas/etiologia , Proteômica , Receptores de Antígenos de Linfócitos T
12.
Nat Methods ; 19(6): 759-769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654951

RESUMO

Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and subjective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.


Assuntos
Neoplasias de Cabeça e Pescoço , Estudos de Coortes , Humanos , Metástase Linfática , Carcinoma de Células Escamosas de Cabeça e Pescoço
13.
Cell ; 185(11): 1924-1942.e23, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35525247

RESUMO

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.


Assuntos
Linfonodos , Melanoma , Animais , Tolerância Imunológica , Imunoterapia , Metástase Linfática/patologia , Melanoma/patologia , Camundongos
14.
Sci Adv ; 8(11): eabi4757, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302849

RESUMO

Cellular cross-talk in tissue microenvironments is fundamental to normal and pathological biological processes. Global assessment of cell-cell interactions (CCIs) is not yet technically feasible, but computational efforts to reconstruct these interactions have been proposed. Current computational approaches that identify CCI often make the simplifying assumption that pairwise interactions are independent of one another, which can lead to reduced accuracy. We present REMI (REgularized Microenvironment Interactome), a graph-based algorithm that predicts ligand-receptor (LR) interactions by accounting for LR dependencies on high-dimensional, small-sample size datasets. We apply REMI to reconstruct the human lung adenocarcinoma (LUAD) interactome from a bulk flow-sorted RNA sequencing dataset, then leverage single-cell transcriptomics data to increase the cell type resolution and identify LR prognostic signatures among tumor-stroma-immune subpopulations. We experimentally confirmed colocalization of CTGF:LRP6 among malignant cell subtypes as an interaction predicted to be associated with LUAD progression. Our work presents a computational approach to reconstruct interactomes and identify clinically relevant CCIs.

15.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35192692

RESUMO

A major topic of debate in developmental biology centers on whether development is continuous, discontinuous, or a mixture of both. Pseudo-time trajectory models, optimal for visualizing cellular progression, model cell transitions as continuous state manifolds and do not explicitly model real-time, complex, heterogeneous systems and are challenging for benchmarking with temporal models. We present a data-driven framework that addresses these limitations with temporal single-cell data collected at discrete time points as inputs and a mixture of dependent minimum spanning trees (MSTs) as outputs, denoted as dynamic spanning forest mixtures (DSFMix). DSFMix uses decision-tree models to select genes that account for variations in multimodality, skewness and time. The genes are subsequently used to build the forest using tree agglomerative hierarchical clustering and dynamic branch cutting. We first motivate the use of forest-based algorithms compared to single-tree approaches for visualizing and characterizing developmental processes. We next benchmark DSFMix to pseudo-time and temporal approaches in terms of feature selection, time correlation, and network similarity. Finally, we demonstrate how DSFMix can be used to visualize, compare and characterize complex relationships during biological processes such as epithelial-mesenchymal transition, spermatogenesis, stem cell pluripotency, early transcriptional response from hormones and immune response to coronavirus disease. Our results indicate that the expression of genes during normal development exhibits a high proportion of non-uniformly distributed profiles that are mostly right-skewed and multimodal; the latter being a characteristic of major steady states during development. Our study also identifies and validates gene signatures driving complex dynamic processes during somatic or germline differentiation.


Assuntos
Benchmarking , Modelos Teóricos , Análise de Célula Única/métodos , Algoritmos , Animais , Microambiente Celular , Análise de Dados , Árvores de Decisões , Perfilação da Expressão Gênica/métodos , Humanos , Espermatogênese
16.
JNCI Cancer Spectr ; 5(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738073

RESUMO

Background: The Lung Computed Tomography Screening Reporting and Data System (Lung-RADS) reduces the false-positive rate of lung cancer screening but introduces prolonged periods of uncertainty for indeterminate findings. We assess the cost-effectiveness of a screening program that assesses indeterminate findings earlier via a hypothetical diagnostic biomarker introduced in place of Lung-RADS 3 and 4A guidelines. Methods: We evaluated the performance of the US Preventive Services Task Force (USPSTF) recommendations on lung cancer screening with and without a hypothetical noninvasive diagnostic biomarker using a validated microsimulation model. The diagnostic biomarker assesses the malignancy of indeterminate nodules, replacing Lung-RADS 3 and 4A guidelines, and is characterized by a varying sensitivity profile that depends on nodules' size, specificity, and cost. We tested the robustness of our findings through univariate sensitivity analyses. Results: A lung cancer screening program per the USPSTF guidelines that incorporates a diagnostic biomarker with at least medium sensitivity profile and 90% specificity, that costs $250 or less, is cost-effective with an incremental cost-effectiveness ratio lower than $100 000 per quality-adjusted life year, and improves lung cancer-specific mortality reduction while requiring fewer screening exams than the USPSTF guidelines with Lung-RADS. A screening program with a biomarker costing $750 or more is not cost-effective. The health benefits accrued and costs associated with the screening program are sensitive to the disutility of indeterminate findings and specificity of the biomarker, respectively. Conclusions: Lung cancer screening that incorporates a diagnostic biomarker, in place of Lung-RADS 3 and 4A guidelines, could improve the cost-effectiveness of the screening program and warrants further investigation.


Assuntos
Biomarcadores Tumorais/economia , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/economia , Comitês Consultivos , Análise de Variância , Análise Custo-Benefício , Humanos , Neoplasias Pulmonares/prevenção & controle , Guias de Prática Clínica como Assunto , Avaliação de Programas e Projetos de Saúde , Anos de Vida Ajustados por Qualidade de Vida , Doses de Radiação , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos , Incerteza , Estados Unidos
17.
JAMA Oncol ; 7(12): 1833-1842, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673885

RESUMO

IMPORTANCE: The US Preventive Services Task Force (USPSTF) issued its 2021 recommendation on lung cancer screening, which lowered the starting age for screening from 55 to 50 years and the minimum cumulative smoking exposure from 30 to 20 pack-years relative to its 2013 recommendation. Although costs are expected to increase because of the expanded screening eligibility criteria, it is unknown whether the new guidelines for lung cancer screening are cost-effective. OBJECTIVE: To evaluate the cost-effectiveness of the 2021 USPSTF recommendation for lung cancer screening compared with the 2013 recommendation and to explore the cost-effectiveness of 6 alternative screening strategies that maintained a minimum cumulative smoking exposure of 20 pack-years and an ending age for screening of 80 years but varied the starting ages for screening (50 or 55 years) and the number of years since smoking cessation (≤15, ≤20, or ≤25). DESIGN, SETTING, AND PARTICIPANTS: A comparative cost-effectiveness analysis using 4 independently developed microsimulation models that shared common inputs to assess the population-level health benefits and costs of the 2021 recommended screening strategy and 6 alternative screening strategies compared with the 2013 recommended screening strategy. The models simulated a 1960 US birth cohort. Simulated individuals entered the study at age 45 years and were followed up until death or age 90 years, corresponding to a study period from January 1, 2005, to December 31, 2050. EXPOSURES: Low-dose computed tomography in lung cancer screening programs with a minimum cumulative smoking exposure of 20 pack-years. MAIN OUTCOMES AND MEASURES: Incremental cost-effectiveness ratio (ICER) per quality-adjusted life-year (QALY) of the 2021 vs 2013 USPSTF lung cancer screening recommendations as well as 6 alternative screening strategies vs the 2013 USPSTF screening strategy. Strategies with a mean ICER lower than $100 000 per QALY were deemed cost-effective. RESULTS: The 2021 USPSTF recommendation was estimated to be cost-effective compared with the 2013 recommendation, with a mean ICER of $72 564 (range across 4 models, $59 493-$85 837) per QALY gained. The 2021 recommendation was not cost-effective compared with 6 alternative strategies that used the 20 pack-year criterion. Strategies associated with the most cost-effectiveness included those that expanded screening eligibility to include a greater number of former smokers who had not smoked for a longer duration (ie, ≤20 years and ≤25 years since smoking cessation vs ≤15 years since smoking cessation). In particular, the strategy that screened former smokers who quit within the past 25 years and began screening at age 55 years was associated with screening coverage closest to that of the 2021 USPSTF recommendation yet yielded greater cost-effectiveness, with a mean ICER of $66 533 (range across 4 models, $55 693-$80 539). CONCLUSIONS AND RELEVANCE: This economic evaluation found that the 2021 USPSTF recommendation for lung cancer screening was cost-effective; however, alternative screening strategies that maintained a minimum cumulative smoking exposure of 20 pack-years but included individuals who quit smoking within the past 25 years may be more cost-effective and warrant further evaluation.


Assuntos
Neoplasias Pulmonares , Abandono do Hábito de Fumar , Idoso de 80 Anos ou mais , Análise Custo-Benefício , Detecção Precoce de Câncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Programas de Rastreamento/métodos , Pessoa de Meia-Idade
18.
J Am Coll Radiol ; 18(12): 1614-1623, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419477

RESUMO

PURPOSE: The ACR developed the Lung CT Screening Reporting and Data System (Lung-RADS) to standardize the diagnostic follow-up of suspicious screening findings. A retrospective analysis showed that Lung-RADS would have reduced the false-positive rate in the National Lung Screening Trial, but the optimal timing of follow-up examinations has not been established. In this study, we assess the effectiveness of alternative diagnostic follow-up intervals on lung cancer screening. METHODS: We used the Lung Cancer Outcome Simulator to estimate population-level outcomes of alternative diagnostic follow-up intervals for Lung-RADS categories 3 and 4A. The Lung Cancer Outcome Simulator is a microsimulation model developed within the Cancer Intervention and Surveillance Modeling Network Consortium to evaluate outcomes of national screening guidelines. Here, among the evaluated outcomes are percentage of mortality reduction, screens performed, lung cancer deaths averted, screen-detected cases, and average number of screens and follow-ups per death averted. RESULTS: The recommended 3-month follow-up interval for Lung-RADS category 4A is optimal. However, for Lung-RADS category 3, a 5-month, instead of the recommended 6-month, follow-up interval yielded a higher mortality reduction (0.08% for men versus 0.05% for women), and a higher number of deaths averted (36 versus 27), a higher number of screen-detected cases (13 versus 7), and a lower number of combined low-dose CTs and diagnostic follow-ups per death avoided (8 versus 5), per one million general population. Sensitivity analysis of nodule progression threshold verifies a higher mortality reduction with a 1-month earlier follow-up for Lung-RADS 3. CONCLUSIONS: One-month earlier diagnostic follow-ups for individuals with Lung-RADS category 3 nodules may result in a higher mortality reduction and warrants further investigation.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Feminino , Seguimentos , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
19.
Cancer ; 127(23): 4432-4446, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383299

RESUMO

BACKGROUND: Current lung cancer risk-based screening approaches use a single risk-threshold, disregard life-expectancy, and ignore past screening findings. We address these limitations with a comprehensive analytical framework, the individualized lung cancer screening decision (ENGAGE) tool that aims to optimize lung cancer screening for US ever-smokers under dynamic risk assessment by incorporating life expectancy and past screening findings over time. METHODS: ENGAGE employs a partially observable Markov decision process framework that integrates published risk prediction and disease progression models, to dynamically assess the trade-off between the expected health benefits and harms associated with screening. ENGAGE evaluates lung cancer risk annually and provides real-time screening eligibility that maximizes the expected quality-adjusted life-years (QALYs) of ever-smokers. We compare ENGAGE against the 2013 U.S. Preventive Services Task Force (USPSTF) lung cancer screening guideline and single-threshold risk-based screening paradigms. RESULTS: Compared with the 2013 USPSTF guidelines, ENGAGE expands screening coverage among ever-smokers (ENGAGE: 78%, USPSTF: 61%), while reducing the number of screening examinations per person (ENGAGE:10.43, USPSTF:12.07, P < .001), yields higher effectiveness in terms of increased lung cancer-specific mortality reduction (ENGAGE: 19%, USPSTF: 15%, P < .001) and improves screening efficiency (ENGAGE: 696, USPSTF: 819 screens per death avoided, P < .001). When compared against a single-threshold risk-based screening strategy, ENGAGE increases QALY requiring 30% fewer screens per death avoided (ENGAGE: 696, single-threshold: 889, P < .001), and reduces false positives by 40%. CONCLUSIONS: ENGAGE provides a comprehensive framework for dynamic risk-based assessment of lung cancer screening eligibility by incorporating life expectancy and past screening findings that can serve to guide future policies on the effectiveness and efficiency of screening. LAY SUMMARY: A novel decision-analytical screening framework was developed for lung cancer, the individualized lung cancer screening decision (ENGAGE) tool to provide personalized screening schedules for ever-smokers. ENGAGE captures the dynamic nature of lung cancer risk and incorporates life expectancy into the screening decision-making process. ENGAGE integrates past screening findings and changes in smoking behavior of individuals and provides informed screening decisions that outperform existing screening guidelines and single-threshold risk-based screening approaches. A personalized lung cancer screening program facilitated by a tool such as ENGAGE could enhance the efficiency of lung cancer screening.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Expectativa de Vida , Programas de Rastreamento , Medição de Risco
20.
PLoS Comput Biol ; 17(6): e1009020, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138842

RESUMO

Since 2000, the National Cancer Institute's Cancer Intervention and Surveillance Modeling Network (CISNET) modeling teams have developed and applied microsimulation and statistical models of breast cancer. Here, we illustrate the use of collaborative breast cancer multilevel systems modeling in CISNET to demonstrate the flexibility of systems modeling to address important clinical and policy-relevant questions. Challenges and opportunities of future systems modeling are also summarized. The 6 CISNET breast cancer models embody the key features of systems modeling by incorporating numerous data sources and reflecting tumor, person, and health system factors that change over time and interact to affect the burden of breast cancer. Multidisciplinary modeling teams have explored alternative representations of breast cancer to reveal insights into breast cancer natural history, including the role of overdiagnosis and race differences in tumor characteristics. The models have been used to compare strategies for improving the balance of benefits and harms of breast cancer screening based on personal risk factors, including age, breast density, polygenic risk, and history of Down syndrome or a history of childhood cancer. The models have also provided evidence to support the delivery of care by simulating outcomes following clinical decisions about breast cancer treatment and estimating the relative impact of screening and treatment on the United States population. The insights provided by the CISNET breast cancer multilevel modeling efforts have informed policy and clinical guidelines. The 20 years of CISNET modeling experience has highlighted opportunities and challenges to expanding the impact of systems modeling. Moving forward, CISNET research will continue to use systems modeling to address cancer control issues, including modeling structural inequities affecting racial disparities in the burden of breast cancer. Future work will also leverage the lessons from team science, expand resource sharing, and foster the careers of early stage modeling scientists to ensure the sustainability of these efforts.


Assuntos
Neoplasias da Mama/patologia , Modelos Estatísticos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/prevenção & controle , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia , Medição de Risco , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...