Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998565

RESUMO

Dermatophytosis is a superficial fungal infection with an ever-increasing number of patients. Culture-based mycology remains the most commonly used diagnosis, but it takes around four weeks to identify the causative agent. Therefore, routine clinical laboratories need rapid, high throughput, and accurate species-specific analytical methods for diagnosis and therapeutic management. Based on these requirements, we investigated the feasibility of DendrisCHIP® technology as an innovative molecular diagnostic method for the identification of a subset of 13 pathogens potentially responsible for dermatophytosis infections in clinical samples. This technology is based on DNA microarray, which potentially enables the detection and discrimination of several germs in a single sample. A major originality of DendrisCHIP® technology is the use of a decision algorithm for probability presence or absence of pathogens based on machine learning methods. In this study, the diagnosis of dermatophyte infection was carried out on more than 284 isolates by conventional microbial culture and DendrisCHIP®DP, which correspond to the DendrisCHIP® carrying oligoprobes of the targeted pathogens implicated in dermatophytosis. While convergence ranging from 75 to 86% depending on the sampling procedure was obtained with both methods, the DendrisCHIP®DP proved to identify more isolates with pathogens that escaped the culture method. These results were confirmed at 86% by a third method, which was either a specific RT-PCR or genome sequencing. In addition, diagnostic results with DendrisCHIP®DP can be obtained within a day. This faster and more accurate identification of fungal pathogens with DendrisCHIP®DP enables the clinician to quickly and successfully implement appropriate antifungal treatment to prevent the spread and elimination of dermatophyte infection. Taken together, these results demonstrate that this technology is a very promising method for routine diagnosis of dermatophytosis.

2.
Diagnostics (Basel) ; 12(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35741163

RESUMO

Osteoarticular infections are major disabling diseases that can occur after orthopedic implant surgery in patients. The management of these infections is very complex and painful, requiring surgical intervention in combination with long-term antibiotic treatment. Therefore, early and accurate diagnosis of the causal pathogens is essential before formulating chemotherapeutic regimens. Although culture-based microbiology remains the most common diagnosis of osteoarticular infections, its regular failure to identify the causative pathogen as well as its long-term modus operandi motivates the development of rapid, accurate, and sufficiently comprehensive bacterial species-specific diagnostics that must be easy to use by routine clinical laboratories. Based on these criteria, we reported on the feasibility of our DendrisCHIP® technology using DendrisCHIP®OA as an innovative molecular diagnostic method to diagnose pathogen bacteria implicated in osteoarticular infections. This technology is based on the principle of microarrays in which the hybridization signals between oligoprobes and complementary labeled DNA fragments from isolates queries a database of hybridization signatures corresponding to a list of pre-established bacteria implicated in osteoarticular infections by a decision algorithm based on machine learning methods. In this way, this technology combines the advantages of a PCR-based method and next-generation sequencing (NGS) while reducing the limitations and constraints of the two latter technologies. On the one hand, DendrisCHIP®OA is more comprehensive than multiplex PCR tests as it is able to detect many more germs on a single sample. On the other hand, this method is not affected by the large number of nonclinically relevant bacteria or false positives that characterize NGS, as our DendrisCHIP®OA has been designed to date to target only a subset of 20 bacteria potentially responsible for osteoarticular infections. DendrisCHIP®OA has been compared with microbial culture on more than 300 isolates and a 40% discrepancy between the two methods was found, which could be due in part but not solely to the absence or poor identification of germs detected by microbial culture. We also demonstrated the reliability of our technology in correctly identifying bacteria in isolates by showing a convergence (i.e., same bacteria identified) with NGS superior to 55% while this convergence was only 32% between NGS and microbial culture data. Finally, we showed that our technology can provide a diagnostic result in less than one day (technically, 5 h), which is comparatively faster and less labor intensive than microbial cultures and NGS.

3.
Stem Cell Reports ; 14(1): 1-8, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31902703

RESUMO

Genomic integrity of human pluripotent stem cells (hPSCs) is essential for research and clinical applications. However, genetic abnormalities can accumulate during hPSC generation and routine culture and following gene editing. Their occurrence should be regularly monitored, but the current assays to assess hPSC genomic integrity are not fully suitable for such regular screening. To address this issue, we first carried out a large meta-analysis of all hPSC genetic abnormalities reported in more than 100 publications and identified 738 recurrent genetic abnormalities (i.e., overlapping abnormalities found in at least five distinct scientific publications). We then developed a test based on the droplet digital PCR technology that can potentially detect more than 90% of these hPSC recurrent genetic abnormalities in DNA extracted from culture supernatant samples. This test can be used to routinely screen genomic integrity in hPSCs.


Assuntos
Variação Genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular/genética , Meios de Cultivo Condicionados , Edição de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...