Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 248: 112364, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37689037

RESUMO

Hepcidin is an iron regulatory hormone that does not bind iron directly. Instead, its mature 25-peptide form (H25) contains a binding site for other metals, the so-called ATCUN/NTS (amino-terminal Cu/Ni binding site). The Cu(II)-hepcidin complex was previously studied, but due to poor solubility and difficult handling of the peptide the definitive account on the binding equilibrium was not obtained reliably. In this study we performed a series of fluorescence competition experiments between H25 and its model peptides containing the same ATCUN/NTS site and determined the Cu(II) conditional binding constant of the CuH25 complex at pH 7.4, CK7.4 = 4 ± 2 × 1014 M-1. This complex was found to be very inert in exchange reactions and poorly reactive in the ascorbate consumption test. The consequences of these findings for the putative role of Cu(II) interactions with H25 are discussed.


Assuntos
Hepcidinas , Ferro , Humanos , Sítios de Ligação , Fluorescência , Domínios Proteicos
2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555126

RESUMO

Hepcidin (DTHFPICIFCCGCCHRSKCGMCCKT), an iron-regulatory hormone, is a 25-amino-acid peptide with four intramolecular disulfide bonds circulating in blood. Its hormonal activity is indirect and consists of marking ferroportin-1 (an iron exporter) for degradation. Hepcidin biosynthesis involves the N-terminally extended precursors prepro-hepcidin and pro-hepcidin, processed by peptidases to the final 25-peptide form. A sequence-specific formation of disulfide bonds and export of the oxidized peptide to the bloodstream follows. In this study we considered the fact that prior to export, reduced hepcidin may function as an octathiol ligand bearing some resemblance to the N-terminal part of the α-domain of metallothioneins. Consequently, we studied its ability to bind Zn(II) and Cd(II) ions using the original peptide and a model for prohepcidin extended N-terminally with a stretch of five arginine residues (5R-hepcidin). We found that both form equivalent mononuclear complexes with two Zn(II) or Cd(II) ions saturating all eight Cys residues. The average affinity at pH 7.4, determined from pH-metric spectroscopic titrations, is 1010.1 M-1 for Zn(II) ions; Cd(II) ions bind with affinities of 1015.2 M-1 and 1014.1 M-1. Using mass spectrometry and 5R-hepcidin we demonstrated that hepcidin can compete for Cd(II) ions with metallothionein-2, a cellular cadmium target. This study enabled us to conclude that hepcidin binds Zn(II) and Cd(II) sufficiently strongly to participate in zinc physiology and cadmium toxicity under intracellular conditions.


Assuntos
Cádmio , Hepcidinas , Cádmio/metabolismo , Peptídeos , Ferro , Dissulfetos , Metalotioneína/metabolismo
4.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080347

RESUMO

Nickel is toxic to humans. Its compounds are carcinogenic. Furthermore, nickel allergy is a severe health problem that affects approximately 10-20% of humans. The mechanism by which these conditions develop remains unclear, but it may involve the cleavage of specific proteins by nickel ions. Ni(II) ions cleave the peptide bond preceding the Ser/Thr-Xaa-His sequence. Such sequences are present in all four enzymes of the melatonin biosynthesis pathway, i.e., tryptophan 5-hydroxylase 1, aromatic-l-amino-acid decarboxylase, serotonin N-acetyltransferase, and acetylserotonin O-methyltransferase. Moreover, fragments prone to Ni(II) are exposed on surfaces of these proteins. Our results indicate that all four studied fragments undergo cleavage within tens of hours at pH 8.2 and 37 °C, corresponding with the conditions in the mitochondrial matrix. Since melatonin, a potent antioxidant and anti-inflammatory agent, is synthesized within the mitochondria of virtually all human cells, depleting its supply may be detrimental, e.g., by raising the oxidative stress level. Intriguingly, Ni(II) ions have been shown to mimic hypoxia through the stabilization of HIF-1α protein, but melatonin prevents the action of HIF-1α. Considering all this, the enzymes of the melatonin biosynthesis pathway seem to be a toxicological target for Ni(II) ions.


Assuntos
Melatonina , Níquel , Humanos , Íons , Melatonina/farmacologia , Níquel/química , Ligação Proteica , Proteínas/metabolismo
5.
Front Mol Biosci ; 9: 828674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359602

RESUMO

Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.

6.
J Am Soc Mass Spectrom ; 32(12): 2766-2776, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738801

RESUMO

The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH-jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)-peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants.


Assuntos
Complexos de Coordenação , Cobre , Peptídeos , Espectrometria de Massas por Ionização por Electrospray/métodos , Complexos de Coordenação/análise , Complexos de Coordenação/química , Cobre/análise , Cobre/química , Histidina/química , Cinética , Peptídeos/análise , Peptídeos/química
7.
Inorg Chem ; 59(19): 14000-14011, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32924459

RESUMO

The Aß5-x peptides (x = 38, 40, 42) are minor Aß species in normal brains but elevated upon the application of inhibitors of Aß processing enzymes. They are interesting from the point of view of coordination chemistry for the presence of an Arg-His metal binding sequence at their N-terminus capable of forming a 3-nitrogen (3N) three-coordinate chelate system. Similar sequences in other bioactive peptides were shown to bind Cu(II) ions in biological systems. Therefore, we investigated Cu(II) complex formation and reactivity of a series of truncated Aß5-x peptide models comprising the metal binding site: Aß5-9, Aß5-12, Aß5-12Y10F, and Aß5-16. Using CD and UV-vis spectroscopies and potentiometry, we found that all peptides coordinated the Cu(II) ion with substantial affinities higher than 3 × 1012 M-1 at pH 7.4 for Aß5-9 and Aß5-12. This affinity was elevated 3-fold in Aß5-16 by the formation of the internal macrochelate with the fourth coordination site occupied by the imidazole nitrogen of the His13 or His14 residue. A much higher boost of affinity could be achieved in Aß5-9 and Aß5-12 by adding appropriate amounts of the external imidazole ligand. The 3N Cu-Aß5-x complexes could be irreversibly reduced to Cu(I) at about -0.6 V vs Ag/AgCl and oxidized to Cu(III) at about 1.2 V vs Ag/AgCl. The internal or external imidazole coordination to the 3N core resulted in a slight destabilization of the Cu(I) state and stabilization of the Cu(III) state. Taken together these results indicate that Aß5-x peptides, which bind Cu(II) ions much more strongly than Aß1-x peptides and only slightly weaker than Aß4-x peptides could interfere with Cu(II) handling by these peptides, adding to copper dyshomeostasis in Alzheimer brains.


Assuntos
Peptídeos beta-Amiloides/química , Complexos de Coordenação/química , Cobre/química , Histidina/química , Imidazóis/química , Nitrogênio/química , Oxirredução
8.
Metallomics ; 12(4): 470-473, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236192

RESUMO

N-Truncated Aß4-42 displays a high binding affinity with CuII. A mechanistic scheme of the interactions between Aß4-42 and CuII has been proposed using a fluorescence approach. The timescales of different conversion steps were determined. This kinetic mechanism indicates the potential synaptic functions of Aß4-42 during neurotransmission.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Cobre/química , Cinética , Modelos Químicos , Estrutura Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Termodinâmica
9.
Inorg Chem ; 59(7): 4186-4190, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32212682

RESUMO

Aß4-42 is the major subspecies of Aß peptides characterized by avid Cu(II) binding via the ATCUN/NTS motif. It is thought to be produced in vivo proteolytically by neprilysin, but in vitro experiments in the presence of Cu(II) ions indicated preferable formation of C-terminally truncated ATCUN/NTS species including CuIIAß4-16, CuIIAß4-9, and also CuIIAß12-16, all with nearly femtomolar affinities at neutral pH. Such small complexes may serve as shuttles for copper clearance from extracellular brain spaces, on condition they could survive intracellular conditions upon crossing biological barriers. In order to ascertain such possibility, we studied the reactions of CuIIAß4-16, CuIIAß4-9, CuIIAß12-16, and CuIIAß1-16 with reduced glutathione (GSH) under aerobic and anaerobic conditions using absorption spectroscopy and mass spectrometry. We found CuIIAß4-16 and CuIIAß4-9 to be strongly resistant to reduction and concomitant formation of Cu(I)-GSH complexes, with reaction times ∼10 h, while CuIIAß12-16 was reduced within minutes and CuIIAß1-16 within seconds of incubation. Upon GSH exhaustion by molecular oxygen, the CuIIAß complexes were reformed with no concomitant oxidative damage to peptides. These finding reinforce the concept of Aß4-x peptides as physiological trafficking partners of brain copper.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Proteínas de Transporte/química , Cobre/química , Glutationa/química , Neprilisina/metabolismo , Oxirredução , Fragmentos de Peptídeos/química
10.
Chem Commun (Camb) ; 56(9): 1329-1332, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912071

RESUMO

Silver (Ag(i)) binding to consensus zinc fingers (ZFs) causes Zn(ii) release inducing a gradual disruption of the hydrophobic core, followed by an overall conformational change and formation of highly stable AgnSn clusters. A compact eight-membered Ag4S4 structure formed by a CCCC ZF is the first cluster example reported for a single biological molecule. Ag(i)-induced conformational changes of ZFs can, as a consequence, affect transcriptional regulation and other cellular processes.

11.
Sci Rep ; 9(1): 11018, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358826

RESUMO

Numerous inhibitors of protein kinases act on the basis of competition, targeting the ATP binding site. In this work, we present a procedure of rational design of a bi-substrate inhibitor, complemented with biophysical assays. The inhibitors of this type are commonly engineered by combining ligands carrying an ATP-like part with a peptide or peptide-mimicking fragment that determines specificity. Approach presented in this paper led to generation of a specific system for independent screening for efficient ligands and peptides, by means of thermodynamic measurements, that assessed the ability of the identified ligand and peptide to combine into a bi-substrate inhibitor. The catalytic subunit of human protein kinase CK2 was used as the model target. Peptide sequence was optimized using peptide libraries [KGDE]-[DE]-[ST]-[DE]3-4-NH2, originated from the consensus CK2 sequence. We identified KESEEE-NH2 peptide as the most promising one, whose binding affinity is substantially higher than that of the reference RRRDDDSDDD peptide. We assessed its potency to form an efficient bi-substrate inhibitor using tetrabromobenzotriazole (TBBt) as the model ATP-competitive inhibitor. The formation of ternary complex was monitored using Differential Scanning Fluorimetry (DSF), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC).


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Termodinâmica
12.
Inorg Chem ; 58(1): 932-943, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30582328

RESUMO

The catabolism of ß-amyloid (Aß) is carried out by numerous endopeptidases including neprilysin, which hydrolyzes peptide bonds preceding positions 4, 10, and 12 to yield Aß4-9 and a minor Aß12- x species. Alternative processing of the amyloid precursor protein by ß-secretase also generates the Aß11- x species. All these peptides contain a Xxx-Yyy-His sequence, also known as an ATCUN or NTS motif, making them strong chelators of Cu(II) ions. We synthesized the corresponding peptides, Phe-Arg-His-Asp-Ser-Gly-OH (Aß4-9), Glu-Val-His-His-Gln-Lys-am (Aß11-16), Val-His-His-Gln-Lys-am (Aß12-16), and pGlu-Val-His-His-Gln-Lys-am (pAß11-16), and investigated their Cu(II) binding properties using potentiometry, and UV-vis, circular dichroism, and electron paramagnetic resonance spectroscopies. We found that the three peptides with unmodified N-termini formed square-planar Cu(II) complexes at pH 7.4 with analogous geometries but significantly varied Kd values of 6.6 fM (Aß4-9), 9.5 fM (Aß12-16), and 1.8 pM (Aß11-16). Cyclization of the N-terminal Glu11 residue to the pyroglutamate species pAß11-16 dramatically reduced the affinity (5.8 nM). The Cu(II) affinities of Aß4-9 and Aß12-16 are the highest among the Cu(II) complexes of Aß peptides. Using fluorescence spectroscopy, we demonstrated that the Cu(II) exchange between the Phe-Arg-His and Val-His-His motifs is very slow, on the order of days. These results are discussed in terms of the relevance of Aß4-9, a major Cu(II) binding Aß fragment generated by neprilysin, as a possible Cu(II) carrier in the brain.


Assuntos
Peptídeos beta-Amiloides/química , Quelantes/química , Cobre/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Motivos de Aminoácidos , Quelantes/síntese química , Complexos de Coordenação/química , Estrutura Molecular , Neprilisina/química , Oligopeptídeos/síntese química , Fragmentos de Peptídeos/síntese química
13.
Metallomics ; 10(12): 1723-1727, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30489586

RESUMO

Human cells acquire copper primarily via the copper transporter 1 protein, hCtr1. We demonstrate that at extracellular pH 7.4 CuII is bound to the model peptide hCtr11-14via an ATCUN motif and such complexes are strong enough to collect CuII from albumin, supporting the potential physiological role of CuII binding to hCtr1.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/química , Cobre/química , Transportador de Cobre 1 , Humanos , Modelos Moleculares , Ligação Proteica , Albumina Sérica Humana/química
14.
Inorg Chem ; 57(24): 15507-15516, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30480433

RESUMO

The Cu(II) and Zn(II) binding abilities of Gly-His-Thr-Asp-amide (GHTD-am), a tetrapeptide coreleased from the pancreas along with insulin, were studied using UV-vis and circular dichroism spectroscopies, potentiometry, and calorimetry. GHTD-am is a very strong Cu(II) chelator, forming a three-nitrogen complex with a conditional affinity constant C K at pH 7.4 of 4.5 × 1012 M-1. The fourth coordination site can be occupied by a solvent molecule or a ternary ligand, such as imidazole, with C K on the order of several hundred reciprocal molar. The Zn(II) binding ability of GHTD-am is relatively weak, with C K values at pH 7.4 of 3.0 × 104 and 2.0 × 103 M-1 for the first and second GHTD-am molecule coordinated, respectively. These results are discussed in light of the modes of interactions of Zn(II) and Cu(II) ions with insulin. A direct effect of GHTD-am on the Zn(II) interactions with insulin is unlikely, but its Cu(II) complex may have a biological relevance because of its high affinity and ability to form ternary complexes.

15.
Chem Commun (Camb) ; 54(89): 12634-12637, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357199

RESUMO

Copper transfer from Cu(ii)amyloid-ß4-16 to human Zn7-metallothionein-3 can be accelerated by glutamate and by lowering the Zn-load of metallothionein-3 with EDTA. Glutamate facilitates the Cu(ii) release, and Zn4-6-metallothionein-3 react more rapidly. These mechanisms are additive, proving the intricate and interconnected network of zinc and copper trafficking between biomolecules.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Ácido Glutâmico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Compostos Organometálicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Cobre/química , Ácido Glutâmico/química , Humanos , Metalotioneína 3 , Proteínas do Tecido Nervoso/química , Neurotransmissores/química , Compostos Organometálicos/química , Fragmentos de Peptídeos/química
16.
J Inorg Biochem ; 182: 230-237, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402466

RESUMO

Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 1013 M-1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 1014 M-1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/química , Cobre/metabolismo , Animais , Sítios de Ligação , Transportador de Cobre 1 , Humanos , Camundongos , Ligação Proteica
17.
Angew Chem Int Ed Engl ; 55(29): 8235-8, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27238224

RESUMO

Aß4-42 is a major species of Aß peptide in the brains of both healthy individuals and those affected by Alzheimer's disease. It has recently been demonstrated to bind Cu(II) with an affinity approximately 3000 times higher than the commonly studied Aß1-42 and Aß1-40 peptides, which are implicated in the pathogenesis of Alzheimer's disease. Metallothionein-3, a protein considered to orchestrate copper and zinc metabolism in the brain and provide antioxidant protection, was shown to extract Cu(II) from Aß1-40 when acting in its native Zn7 MT-3 form. This reaction is assumed to underlie the neuroprotective effect of Zn7 MT-3 against Aß toxicity. In this work, we used the truncated model peptides Aß1-16 and Aß4-16 to demonstrate that the high-affinity Cu(II) complex of Aß4-16 is resistant to Zn7 MT-3 reactivity. This indicates that the analogous complex of the full-length peptide Cu(Aß4-42) will not yield copper to MT-3 in the brain, thus supporting the concept of a physiological role for Aß4-42 as a Cu(II) scavenger in the synaptic cleft.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Sequestradores de Radicais Livres/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos beta-Amiloides/química , Cobre/química , Sequestradores de Radicais Livres/química , Metalotioneína 3 , Estrutura Molecular , Proteínas do Tecido Nervoso/química , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...