Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 500: 63-78, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961524

RESUMO

Despite the presence of multiple pharmacotherapeutic options, incidence rates for depressive disorders continue to rise. Nonpharmacological approaches (e.g., cognitive and behavioral therapies) exhibit encouraging efficacy rates; however, a lack of preclinical models has prevented progress in the identification of relevant neurobiological mechanisms of these approaches. Accordingly, the effort-based reward (EBR) preclinical model exposes rats to response-outcome (R-O) contingencies and provides an opportunity to investigate behavioral clinical approaches. In the current study, male and female rats were assigned to either an EBR contingent- or noncontingent-trained group and exposed to 7 weeks of training. Neuroadaptive cognitive responses were assessed in a cognitive uncertainty task (UT) and an object pattern separation task (OPST). Although no significant effects of EBR were observed in the UT, EBR contingent-trained rats approached the novel panel in the most difficult trial of the OPST faster than the noncontingent-trained group. Additionally, female EBR contingent-trained rats exhibited increased engagement with the novel stimulus panel across all trials. Examination of brain-derived neurotrophic factor (BDNF) in the lateral habenula (LHb), a putative neurobiological target for depressive symptoms, revealed lower BDNF immunoreactivity in EBR contingent-trained rats. Females in both training groups exhibited higher dehydroepiandrosterone/cortisol (DHEA/CORT) ratios, suggesting, along with the increased engagement with novel stimulus panels, that female rats may be more responsive to EBR contingency training than males. Together, these results suggest that EBR contingency training offers promise as a preclinical rat model for behavioral therapeutic interventions for depressive symptoms leading to a clearer understanding of putative neurobiological mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Animais , Cognição , Depressão/psicologia , Depressão/terapia , Feminino , Masculino , Ratos , Ratos Long-Evans , Recompensa
2.
Behav Brain Res ; 432: 113978, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35753530

RESUMO

Although rodents have represented the most intensely studied animals in neurobiological investigations for more than a century, few studies have systematically compared neural and endocrine differences between wild rodents in their natural habitats and laboratory strains raised in traditional laboratory environments. In the current study, male and female Rattus norvegicus rats were trapped in an urban setting and compared to weight-and sex-matched conspecifics living in standard laboratory housing conditions. Brains were extracted for neural assessments and fecal boli were collected for endocrine [corticosterone and dehydroepiandrosterone (DHEA)] assays. Additionally, given their role in immune and stress functions, spleen and adrenal weights were recorded. A separate set of wild rats was trapped at a dairy farm and held in captivity for one month prior to assessments; in these animals, brains were processed but no hormone data were available. The results indicated that wild-trapped rats exhibited 31% heavier brains, including higher densities of cerebellar neurons and glial cells in the bed nucleus of the stria terminalis. The wild rats also had approximately 300% greater spleen and adrenal weights, and more than a six-fold increase in corticosterone levels than observed in laboratory rats. Further research on neurobiological variables in wild vs. lab animals will inform the extensive neurobiological knowledge base derived from laboratory investigations using selectively bred rodents in laboratory environments, knowledge that will enhance the translational value of preclinical laboratory rodent studies.


Assuntos
Corticosterona , Neuroglia , Animais , Encéfalo , Feminino , Masculino , Ratos
3.
J Comp Neurol ; 529(14): 3375-3388, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34076254

RESUMO

With rates of psychiatric illnesses such as depression continuing to rise, additional preclinical models are needed to facilitate translational neuroscience research. In the current study, the raccoon (Procyon lotor) was investigated due to its similarities with primate brains, including comparable proportional neuronal densities, cortical magnification of the forepaw area, and cortical gyrification. Specifically, we report on the cytoarchitectural characteristics of raccoons profiled as high, intermediate, or low solvers in a multiaccess problem-solving task. Isotropic fractionation indicated that high-solvers had significantly more cells in the hippocampus (HC) than the other solving groups; further, a nonsignificant trend suggested that this increase in cell profile density was due to increased nonneuronal (e.g., glial) cells. Group differences were not observed in the cellular density of the somatosensory cortex. Thionin-based staining confirmed the presence of von Economo neurons (VENs) in the frontoinsular cortex, although no impact of solving ability on VEN cell profile density levels was observed. Elongated fusiform cells were quantified in the HC dentate gyrus where high-solvers were observed to have higher levels of this cell type than the other solving groups. In sum, the current findings suggest that varying cytoarchitectural phenotypes contribute to cognitive flexibility. Additional research is necessary to determine the translational value of cytoarchitectural distribution patterns on adaptive behavioral outcomes associated with cognitive performance and mental health.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Cognição/fisiologia , Guaxinins/fisiologia , Animais , Contagem de Células , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Neurônios/fisiologia , Resolução de Problemas , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA