Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Biotechnol ; 14: 12, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24512376

RESUMO

BACKGROUND: Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. RESULTS: In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. CONCLUSIONS: This study is, to our knowledge, the first to identify peptides that bind specifically to amorphous and to crystalline Ni3B nanoparticles. We think that the identified strong binding sequences described here could potentially serve for the utilisation of M13 phage as a viable alternative to other methods to create tailor-made boride composite materials or new catalytic surfaces by a biologically driven nano-assembly synthesis and structuring.


Assuntos
Compostos de Boro/química , Biblioteca de Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Bacteriófago M13/metabolismo , Ligação Competitiva , Metais/química , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanopartículas/química
3.
BMC Microbiol ; 11: 211, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21943062

RESUMO

BACKGROUND: Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. RESULTS: The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. CONCLUSIONS: Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.


Assuntos
Bacteriófago M13/fisiologia , Proteínas do Capsídeo/metabolismo , Membrana Celular/virologia , Escherichia coli/virologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacteriófago M13/química , Bacteriófago M13/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Montagem de Vírus
4.
Phys Biol ; 7(4): 045002, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21149972

RESUMO

Filamentous phages release their progeny particles by a secretory process without lysing the bacterial cell. By this process about 6 viral particles per min are secreted from each cell. We show here that when the major coat protein (gp8) is provided from a plasmid we observe a phage progeny production rate depending on the induction of gp8 by IPTG. We also show that a transfection of Escherichia coli lacking F-pili is observed using a mutant of M13 that carries an ampicillin resistance gene, and phage particles are secreted in the absence of an F-plasmid. Extruding phage was visualized by atomic force microscopy (AFM) and by transmission electron microscopy (TEM) using gold-labeled antibodies to the major coat protein.


Assuntos
Bacteriófagos/fisiologia , Montagem de Vírus , Bacteriófagos/ultraestrutura , Proteínas do Capsídeo/fisiologia , Escherichia coli/genética , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Plasmídeos , Transfecção
5.
J Biol Chem ; 281(25): 17474-17481, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16621801

RESUMO

Hepatitis B virus capsid-like particles (CLPs), icosahedral assemblies formed by 90 or 120 core protein dimers, hold promise as immune-enhancing vaccine carriers for heterologous antigens. Insertions into the immunodominant c/e1 B cell epitope, a surface-exposed loop, are especially immunogenic. However, display of whole proteins, desirable to induce multispecific and possibly neutralizing antibody responses, can be restrained by an unsuitable structure of the foreign protein and by its propensity to undergo homomeric interactions. Here we analyzed CLP formation by core fusions with two distinct variants of the dimeric outer surface lipoprotein C (OspC) of the Lyme disease agent Borrelia burgdorferi. Although the topology of the termini in the OspC dimer does not match that of the insertion sites in the carrier dimer, both fusions, coreOspCa and coreOspCb, efficiently formed stable CLPs. Electron cryomicroscopy clearly revealed the surface disposition of the OspC domains, possibly with OspC dimerization occurring across different core protein dimers. In mice, both CLP preparations induced high-titered antibody responses against the homologous OspC variant, but with substantial cross-reactivity against the other variant. Importantly, both conferred protection to mice challenged with B. burgdorferi. These data show the principal applicability of hepatitis B virus CLPs for the display of dimeric proteins, demonstrate the presence in OspC of hitherto uncharacterized epitopes, and suggest that OspC, despite its genetic variability, may be a valid vaccine candidate.


Assuntos
Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Borrelia burgdorferi/patogenicidade , Proteínas do Nucleocapsídeo/química , Animais , Vacinas Bacterianas/química , Dimerização , Epitopos de Linfócito B/química , Variação Genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Modelos Moleculares , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína
6.
J Mol Biol ; 356(3): 812-22, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16378623

RESUMO

Hepatitis B virus (HBV) replicates through reverse transcription inside its icosahedral nucleocapsid. The internal genome status is signaled to the capsid surface, predicting regulated conformational changes in the capsid structure. To probe their nature and extent, we imposed local conformational stress on the outer surface of HBV capsid-like particles, and monitored its consequences by electron cryomicroscopy and image reconstruction. The capsid structure had an enormous flexibility and robustness as a whole, as well as within the subunits, whose spikes were able to rotate by as much as 40 degrees against the distal interdimer contact sites. The likely hinge for the swiveling movement was the conserved Gly111 residue at the inner surface of the capsid. The stress imposed from the outside also affected the internal capsid organization, implying a specific route for the flow of conformational information between capsid interior and exterior as required for signaling of the genome status.


Assuntos
Capsídeo/química , Vírus da Hepatite B/química , Sequência de Aminoácidos , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Genes Reporter , Glicina/química , Vírus da Hepatite B/ultraestrutura , Dados de Sequência Molecular , Prolina/química , Conformação Proteica , Estrutura Terciária de Proteína
7.
J Med Virol ; 69(2): 267-72, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12683417

RESUMO

Amphotropic murine leukemia virus (MLV) replicates in cells from various mammalian species including humans and is a potential contaminant in MLV vector preparations for human gene transfer studies. Because MLV replication proceeds through an RNA genome that is generated under the control of viral enhancer and promoter elements, vectors were developed that delete such elements during transduction to reduce the generation of replication-competent virus. It was shown recently that replication of amphotropic MLV in certain human cells is possible without the 75 bp transcription enhancers. It is now demonstrated that enhancer-independent replication requires functional elements within U3 and is repressed by an extended deletion in the U3 region comprising enhancers, promoter and flanking sequences. It is concluded that the transcriptional inactivation of amphotropic MLV in human cells requires the combined deletion of enhancers and of additional elements in U3.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Leucemia Murina/fisiologia , Transcrição Gênica , Replicação Viral , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Deleção de Genes , Humanos , Vírus da Leucemia Murina/genética , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...