Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 54: 102564, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315035

RESUMO

This study examines the potential of hair shaft proteomic analysis to delineate genetic relatedness. Proteomic profiling and amino acid sequence analysis provide information for quantitative and statistically-based analysis of individualization and sample similarity. Protein expression levels are a function of cell-specific transcriptional and translational programs. These programs are greatly influenced by an individual's genetic background, and are therefore influenced by familial relatedness as well as ancestry and genetic disease. Proteomic profiles should therefore be more similar among related individuals than unrelated individuals. Likewise, profiles of genetically variant peptides that contain single amino acid polymorphisms, the result of non-synonymous SNP alleles, should behave similarly. The proteomically-inferred SNP alleles should also provide a basis for calculation of combined paternity and sibship indices. We test these hypotheses using matching proteomic and genetic datasets from a family of two adults and four siblings, one of which has a genetic condition that perturbs hair structure and properties. We demonstrate that related individuals, compared to those who are unrelated, have more similar proteomic profiles, profiles of genetically variant peptides and higher combined paternity indices and combined sibship indices. This study builds on previous analyses of hair shaft protein profiling and genetically variant peptide profiles in different real-world scenarios including different human hair shaft body locations and pigmentation status. It also validates the inclusion of proteomic information with other biomolecular substrates in forensic hair shaft analysis, including mitochondrial and nuclear DNA.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteômica , Cabelo , Humanos , Espectrometria de Massas , Peptídeos/genética
2.
Forensic Sci Int Genet ; 47: 102309, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485593

RESUMO

Recent reports highlight possible improvements in individual identification using proteomic information from human hair evidence. These reports have stimulated investigation of parameters that affect the utility of proteomic information. In addition to variables already studied relating to processing technique and anatomic origin of hair shafts, an important variable is hair ageing. Present work focuses on the effect of age on protein profiling and analysis of genetically variant peptides (GVPs). Hair protein profiles may be affected by developmental and physiological changes with age of the donor, exposure to different environmental conditions and intrinsic processes, including during storage. First, to explore whether general trends were evident in the population at different ages, hair samples were analyzed from groups of different subjects in their 20's, 40's and 60's. No significant differences were seen as a function of age, but consistent differences were evident between European American and African American hair profiles. Second, samples collected from single individuals at different ages were analyzed. Mostly, these showed few protein expression level differences over periods of 10 years or less, but samples from subjects at 44 and 65 year intervals were distinctly different in profile. The results indicate that use of protein profiling for personal identification, if practical, would be limited to decadal time intervals. Moreover, batch effects were clearly evident in samples processed by different staff. To investigate the contribution of storage (at room temperature) in affecting the outcomes, the same proteomic digests were analyzed for GVPs. In samples stored over 10 years, GVPs were reduced in number in parallel with the yield of identified proteins and unique peptides. However, a very different picture emerged with respect to personal identification. Numbers of GVPs sufficed to distinguish individuals despite the age differences of the samples. As a practical matter, three hair samples per person provided nearly the maximal number obtained from 5 or 6 samples. The random match probability (where the log increased in proportion to the number of GVPs) reached as high as 1 in 108. The data indicate that GVP results are dependent on the single nucleotide polymorphism profile of the donor genome, where environmental/processing factors affect only the yield, and thus are consistent despite the ages of the donors and samples and batchwise effects in processing. This conclusion is critical for application to casework where the samples may be in storage for long periods and used to match samples recently collected.


Assuntos
Envelhecimento , Cabelo/metabolismo , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , Adulto , Negro ou Afro-Americano , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Peptídeos/genética , Proteínas/genética , Proteômica , População Branca , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...