Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 22(11): 945-55, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22560614

RESUMO

BACKGROUND: The lateral segregation of Ras proteins into transient plasma membrane nanoclusters is essential for high-fidelity signal transmission by the Ras mitogen-activated protein kinase (MAPK) cascade. In this spatially constrained signaling system, the dynamics of Ras nanocluster assembly and disassembly control MAPK signal output. RESULTS: We show here that BRaf inhibitors paradoxically activate CRaf and MAPK signaling in Ras transformed cells by profoundly dysregulating Ras nanocluster dynamics. Specifically, BRaf inhibitors selectively enhance the plasma membrane nanoclustering of oncogenic K-Ras and N-Ras but have no effect on H-Ras nanoclustering. Raf inhibitors are known to drive the formation of stable BRaf-CRaf and CRaf-CRaf dimers. Our results demonstrate that the presence of two Ras-binding domains in a single Raf dimer is sufficient and required to increase Ras nanoclustering, indicating that Raf dimers promote K- and N-Ras nanocluster formation by crosslinking constituent Ras proteins. Ras crosslinking increases the fraction of K-Ras and N-Ras in their cognate nanoclusters, leading to an increase in MAPK output from the plasma membrane. Intriguingly, increased MAPK signaling in BRaf inhibited cells is accompanied by significantly decreased Akt activation. We show that this signal pathway crosstalk results from a novel mechanism of competition between stabilized Raf dimers and p110α for recruitment to Ras nanoclusters. CONCLUSIONS: Our findings reveal that BRaf inhibitors disrupt Ras nanocluster dynamics with significant, yet divergent, consequences for MAPK and PI3K signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Dimerização , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores
2.
J Biol Chem ; 287(20): 16586-95, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22433858

RESUMO

Ras proteins on the inner leaflet of the plasma membrane signal from transient nanoscale proteolipid assemblies called nanoclusters. Interactions between the Ras lipid anchors and plasma membrane phospholipids, cholesterol, and actin cytoskeleton contribute to the formation, stability, and dynamics of Ras nanoclusters. Many small biological molecules are amphiphilic and capable of intercalating into membranes and altering lipid immiscibility. In this study we systematically examined whether amphiphiles such as indomethacin influence Ras protein nanoclustering in intact plasma membrane. We found that indomethacin, a nonsteroidal anti-inflammatory drug, induced profound and complex effects on Ras spatial organization, all likely related to liquid-ordered domain stabilization. Indomethacin enhanced the clustering of H-Ras.GDP and N-Ras.GTP in cholesterol-dependent nanoclusters. Indomethacin also abrogated efficient GTP-dependent lateral segregation of H- and N-Ras between cholesterol-dependent and cholesterol-independent clusters, resulting in mixed heterotypic clusters of Ras proteins that normally are separated spatially. These heterotypic Ras nanoclusters showed impaired Raf recruitment and kinase activation resulting in significantly compromised MAPK signaling. All of the amphiphilic anti-inflammatory agents we tested had similar effects on Ras nanoclustering and signaling. The potency of these effects correlated with the membrane partition coefficients of the individual agents and was independent of COX inhibition. This study shows that biological amphiphiles have wide-ranging effects on plasma membrane heterogeneity and protein nanoclustering, revealing a novel mechanism of drug action that has important consequences for cell signaling.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Membrana Celular/metabolismo , Indometacina/farmacologia , Proteínas de Membrana/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Colesterol/genética , Colesterol/metabolismo , Cricetinae , Proteínas de Membrana/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas ras/genética
3.
J Biol Chem ; 285(45): 35188-95, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20826816

RESUMO

The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase separation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane.


Assuntos
Anti-Inflamatórios não Esteroides/química , Membrana Celular/química , Colesterol/química , Indometacina/química , Membranas Artificiais , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetinae , Polarização de Fluorescência , Corantes Fluorescentes/química , Humanos , Indometacina/farmacologia , Lauratos/química , Fosfatidilcolinas/química , Transdução de Sinais/efeitos dos fármacos
4.
PLoS One ; 5(8): e11991, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700538

RESUMO

H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability.


Assuntos
Sistema de Sinalização das MAP Quinases , Nanoestruturas/química , Proteínas ras/química , Proteínas ras/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Cricetinae , Recuperação de Fluorescência Após Fotodegradação , Galectina 1/química , Galectina 1/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Estabilidade Proteica , Fatores de Tempo , Quinases raf/química , Quinases raf/metabolismo
5.
Biophys J ; 99(2): 534-43, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20643072

RESUMO

K-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3. The generation of nanoclusters is essential for high fidelity signal transduction via the MAPK pathway. To explore the mechanisms underlying K-Ras.GTP nanocluster formation, we developed a mathematical model of K-Ras-galectin-3 interactions. We designed a computational method to calculate protein collision rates based on experimentally determined protein diffusion rates and diffusion mechanisms and used a genetic algorithm to search the values of key model parameters. The optimal estimated model parameters were validated using experimental data. The resulting model accurately replicates critical features of K-Ras nanoclustering, including a fixed ratio of clustered K-Ras.GTP to monomeric K-Ras.GTP that is independent of the concentration of K-Ras.GTP. The model reproduces experimental results showing that the cytosolic level of galectin-3 determines the magnitude of the K-Ras.GTP clustered fraction and illustrates that nanoclustering is regulated by key nonequilibrium processes. Our kinetic model identifies a potential biophysical mechanism for K-Ras nanoclustering and suggests general principles that may be relevant for other plasma-membrane-localized proteins.


Assuntos
Membrana Celular/enzimologia , Modelos Biológicos , Nanoestruturas/química , Proteínas ras/metabolismo , Simulação por Computador , Ativação Enzimática , Galectina 3/química , Galectina 3/metabolismo , Guanosina Trifosfato/metabolismo , Estrutura Quaternária de Proteína , Proteínas ras/química
6.
Mol Cell Biol ; 30(15): 3795-804, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20516214

RESUMO

Signal transduction is regulated by the lateral segregation of proteins into nanodomains on the plasma membrane. However, the molecular mechanisms that regulate the lateral segregation of cell surface receptors, such as receptor tyrosine kinases, upon ligand binding are unresolved. Here we used high-resolution spatial mapping to investigate the plasma membrane nanoscale organization of the epidermal growth factor (EGF) receptor (EGFR). Our data demonstrate that in serum-starved cells, the EGFR exists in preformed, cholesterol-dependent, actin-independent nanoclusters. Following stimulation with EGF, the number and size of EGFR nanoclusters increase in a time-dependent manner. Our data show that the formation of EGFR nanoclusters requires receptor tyrosine kinase activity. Critically, we show for the first time that production of phosphatidic acid by phospholipase D2 (PLD2) is essential for ligand-induced EGFR nanocluster formation. In accordance with its crucial role in regulating EGFR nanocluster formation, we demonstrate that modulating PLD2 activity tunes the degree of EGFR nanocluster formation and mitogen-activated protein kinase signal output. Together, these data show that EGFR activation drives the formation of signaling domains by regulating the production of critical second-messenger lipids and modifying the local membrane lipid environment.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Animais , Cricetinae , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Ligantes , Lipídeos de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Mol Biol Cell ; 19(11): 4776-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18784252

RESUMO

The Ras/Raf/MEK/ERK (MAPK) pathway directs multiple cell fate decisions within a single cell. How different system outputs are generated is unknown. Here we explore whether activating the MAPK module from different membrane environments can rewire system output. We identify two classes of nanoscale environment within the plasma membrane. The first, which corresponds to nanoclusters occupied by GTP-loaded H-, N- or K-Ras, supports Raf activation and amplifies low Raf kinase input to generate a digital ERKpp output. The second class, which corresponds to nanoclusters occupied by GDP-loaded Ras, cannot activate Raf and therefore does not activate the MAPK module, illustrating how lateral segregation on plasma membrane influences signal output. The MAPK module is activated at the Golgi, but in striking contrast to the plasma membrane, ERKpp output is analog. Different modes of Raf activation precisely correlate with these different ERKpp system outputs. Intriguingly, the Golgi contains two distinct membrane environments that generate ERKpp, but only one is competent to drive PC12 cell differentiation. The MAPK module is not activated from the ER. Taken together these data clearly demonstrate that the different nanoscale environments available to Ras generate distinct circuit configurations for the MAPK module, bestowing cells with a simple mechanism to generate multiple system outputs from a single cascade.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Animais , Células COS , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/enzimologia , Camundongos , Células NIH 3T3 , Transdução de Sinais/efeitos dos fármacos , Quinases raf/metabolismo
8.
Cancer Res ; 68(16): 6608-16, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18701484

RESUMO

The spatial organization of K-Ras proteins into nanoclusters on the plasma membrane is essential for high-fidelity signal transduction. The mechanism underlying K-Ras nanoclustering is unknown. We show here that K-Ras.GTP recruits Galectin-3 (Gal-3) from the cytosol to the plasma membrane where it becomes an integral nanocluster component. Importantly, we show that the cytosolic level of Gal-3 determines the magnitude of K-Ras.GTP nanoclustering and signal output. The beta-sheet layers of the Gal-3 carbohydrate recognition domain contain a hydrophobic pocket that may accommodate the farnesyl group of K-Ras. V125A substitution within this hydrophobic pocket yields a dominant negative Gal-3(V125A) mutant that inhibits K-Ras activity. Gal-3(V125A) interaction with K-Ras.GTP reduces K-Ras.GTP nanocluster formation, which abrogates signal output from the Raf/mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK; MEK) pathway. Gal-3(V125A) negatively regulates cell growth and reduces cellular transformation. Thus, regulation of K-Ras nanocluster formation and signal output by Gal-3 critically depends on the integrity of the Gal-3 hydrophobic pocket. These results show that Gal-3 overexpression in breast cancer cells, which increases K-Ras signal output, represents oncogenic subversion of plasma membrane nanostructure.


Assuntos
Neoplasias da Mama/metabolismo , Galectina 3/metabolismo , Genes ras/fisiologia , Rim/metabolismo , Animais , Neoplasias da Mama/patologia , Adesão Celular , Proliferação de Células , Células Cultivadas , Cricetinae , Citoplasma/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citometria de Fluxo , Galectina 3/genética , Guanosina Trifosfato/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Rim/patologia , Microscopia Confocal , Microscopia de Fluorescência , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais
9.
Mol Cell Biol ; 28(13): 4377-85, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18458061

RESUMO

The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale environments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades.


Assuntos
Proteínas ras/química , Proteínas ras/metabolismo , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Cricetinae , Fator de Crescimento Epidérmico/farmacologia , Guanosina Trifosfato/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células PC12 , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/metabolismo , Ratos , Eletricidade Estática , Fatores de Transcrição/metabolismo
10.
EMBO J ; 27(5): 727-35, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18273062

RESUMO

The plasma membrane nanoscale distribution of H-ras is regulated by guanine nucleotide binding. To explore the structural basis of H-ras membrane organization, we combined molecular dynamic simulations and medium-throughput FRET measurements on live cells. We extracted a set of FRET values, termed a FRET vector, to describe the lateral segregation and orientation of H-ras with respect to a large set of nanodomain markers. We show that mutation of basic residues in helix alpha4 or the hypervariable region (HVR) selectively alter the FRET vectors of GTP- or GDP-loaded H-ras, demonstrating a critical role for these residues in stabilizing GTP- or GDP-H-ras interactions with the plasma membrane. By a similar analysis, we find that the beta2-beta3 loop and helix alpha5 are involved in a novel conformational switch that operates through helix alpha4 and the HVR to reorient the H-ras G-domain with respect to the plasma membrane. Perturbation of these switch elements enhances MAPK activation by stabilizing GTP-H-ras in a more productive signalling conformation. The results illustrate how the plasma membrane spatially constrains signalling conformations by acting as a semi-neutral interaction partner.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular , Membrana Celular , Clonagem Molecular , Cricetinae , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
11.
Mol Biol Cell ; 19(4): 1404-14, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18234837

RESUMO

The organization of Ras proteins into nanoclusters on the inner plasma membrane is essential for Ras signal transduction, but the mechanisms that drive nanoclustering are unknown. Here we show that epidermal growth factor receptor activation stimulates the formation of H-Ras.GTP-Galectin-1 (Gal-1) complexes on the plasma membrane that are then assembled into transient nanoclusters. Gal-1 is therefore an integral structural component of the H-Ras-signaling nanocluster. Increasing Gal-1 levels increases the stability of H-Ras nanoclusters, leading to enhanced effector recruitment and signal output. Elements in the H-Ras C-terminal hypervariable region and an activated G-domain are required for H-Ras-Gal-1 interaction. Palmitoylation is not required for H-Ras-Gal-1 complex formation, but is required to anchor H-Ras-Gal-1 complexes to the plasma membrane. Our data suggest a mechanism for H-Ras nanoclustering that involves a dual role for Gal-1 as a critical scaffolding protein and a molecular chaperone that contributes to H-Ras trafficking by returning depalmitoylated H-Ras to the Golgi complex for repalmitoylation.


Assuntos
Galectina 1/química , Galectina 1/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Fator de Crescimento Epidérmico/farmacologia , Galectina 1/genética , Complexo de Golgi/metabolismo , Humanos , Lipoilação , Modelos Moleculares , Complexos Multiproteicos , Nanopartículas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas ras/genética
12.
Dev Biol ; 314(1): 12-22, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18154948

RESUMO

The homeobox transcription factor Mtx2 is essential for epiboly, the first morphogenetic movement of gastrulation in zebrafish. Morpholino knockdown of Mtx2 results in stalling of epiboly and lysis due to yolk rupture. However, the mechanism of Mtx2 action is unknown. The role of mtx2 is surprising as most mix/bix family genes are thought to have roles in mesendoderm specification. Using a transgenic sox17-promoter driven EGFP line, we show that Mtx2 is not required for endoderm specification but is required for correct morphogenetic movements of endoderm and axial mesoderm. During normal zebrafish development, mtx2 is expressed at both the blastoderm margin and in the zebrafish equivalent of visceral endoderm, the extra-embryonic yolk syncytial layer (YSL). We show that formation of the YSL is not Mtx2 dependent, but that Mtx2 directs spatial arrangement of YSL nuclei. Furthermore, we demonstrate that Mtx2 knockdown results in loss of the YSL F-actin ring, a microfilament structure previously shown to be necessary for epiboly progression. In summary, we propose that Mtx2 acts within the YSL to regulate morphogenetic movements of both embryonic and extra-embryonic tissues, independently of cell fate specification.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Movimento Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Embrião não Mamífero , Gastrulação/fisiologia , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição SOXF , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
13.
Exp Cell Res ; 314(5): 1105-14, 2008 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-18062963

RESUMO

To examine the roles of endogenous K-ras 4A and K-ras 4B splice variants in tumorigenesis, murine lung carcinogenesis was induced by N-methyl-N-nitrosourea (MNU), which causes a K-ras mutation (G12D) that jointly affects both isoforms. Compared with age-matched K-ras(tmDelta4A/-) mice (where tumours can express mutationally activated K-ras 4B only), tumour number and size were significantly higher in K-ras(+/-) mice (where tumours can also express mutationally activated K-ras 4A), and significantly lower in K-ras(tmDelta4A/tmDelta4A) mice (where tumours can express both wild-type and activated K-ras 4B). MNU induced significantly more, and larger, tumours in wild-type than K-ras(tmDelta4A/tmDelta4A) mice which differ in that only tumours in wild-type mice can express wild-type and activated K-ras 4A. Lung tumours in all genotypes were predominantly papillary adenomas, and tumours from K-ras(+/-) and K-ras(tmDelta4A/-) mice exhibited phospho-Erk1/2 and phospho-Akt staining. Hence (1) mutationally activated K-ras 4B is sufficient to activate the Raf/MEK/ERK(MAPK) and PI3-K/Akt pathways, and initiate lung tumorigenesis, (2) when expressed with activated K-ras 4B, mutationally activated K-ras 4A further promotes lung tumour formation and growth (both in the presence and absence of its wild-type isoform) but does not affect either tumour pathology or progression, and (3) wild-type K-ras 4B, either directly or indirectly, reduces tumour number and size.


Assuntos
Neoplasias Pulmonares/etiologia , Proteínas Mutantes , Isoformas de Proteínas , Proteínas ras/genética , Animais , Progressão da Doença , Neoplasias Pulmonares/patologia , Metilnitrosoureia , Camundongos , Camundongos Knockout , Mutagênese/genética , Transdução de Sinais , Carga Tumoral/genética , Proteínas ras/fisiologia
14.
Traffic ; 8(6): 702-17, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17461795

RESUMO

Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.


Assuntos
Actinas/metabolismo , Colesterol/metabolismo , Endocitose , Glicosilfosfatidilinositóis/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/ultraestrutura , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Clatrina/metabolismo , Clatrina/ultraestrutura , Cricetinae , Cricetulus , Dinaminas/metabolismo , Dinaminas/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/ultraestrutura , Proteína cdc42 de Ligação ao GTP/ultraestrutura
15.
Exp Cell Res ; 312(1): 16-26, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16271715

RESUMO

Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras(tmDelta4A/tmDelta4A) (exon 4A knock-out) ES cells which express K-ras4B only and K-ras(-/-) (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras(tmDelta4A/tmDelta4A) mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras(tmDelta4A/tmDelta4A) ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras(tmDelta4A/tmDelta4A) and K-ras(-/-) ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras(-/-) cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras(tmDelta4A/tmDelta4A) ES cells were more resistant to etoposide-induced apoptosis than K-ras(-/-) cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice.


Assuntos
Envelhecimento/fisiologia , Apoptose , Genes ras/fisiologia , Longevidade/fisiologia , Neoplasias Experimentais/etiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Epiteliais/fisiologia , Incidência , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Células-Tronco/patologia
16.
Proc Natl Acad Sci U S A ; 102(43): 15500-5, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16223883

RESUMO

Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximately 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximately 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.


Assuntos
Actinas/fisiologia , Citoesqueleto/fisiologia , Microdomínios da Membrana/química , Proteínas de Membrana/química , Proteínas ras/química , Animais , Células Cultivadas , Cricetinae , Modelos Teóricos
17.
Mol Cell Biol ; 23(24): 9245-50, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645534

RESUMO

In mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development. It was found that K-ras 4A is also expressed in uterus, lung, pancreas, salivary glands, seminal vesicles, bone marrow cells, and cecum, where it was the major K-Ras isoform expressed. Mating between K-ras(tmDelta4A/+) mice produced viable K-ras(tmDelta4A/tmDelta4A) offspring with the expected Mendelian ratios of inheritance, and these mice expressed the K-ras 4B splice variant only. K-ras(tmDelta4A/tmDelta4A) mice were fertile and showed no histopathological abnormalities on inbred (129/Ola) or crossbred (129/Ola x C57BL/6) genetic backgrounds. The results demonstrate that K-Ras 4A, like H- and N-Ras, is dispensable for normal mouse development, at least in the presence of functional K-Ras 4B.


Assuntos
Genes ras , Processamento Alternativo , Animais , Sequência de Bases , DNA/genética , Feminino , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Isoformas de Proteínas/genética , Distribuição Tecidual
18.
Mol Cancer Res ; 1(11): 820-5, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14517344

RESUMO

Ras proteins transduce signals from membrane-bound receptors via multiple downstream effector pathways and thereby affect fundamental cellular processes, including proliferation, apoptosis, and differentiation. K-ras activating mutations play a key role in neoplastic progression and are particularly prevalent in colorectal, pancreatic, and lung cancers. The present study addressed whether the K-ras proto-oncogene displays a tumor suppressor function by comparative analysis of mouse teratomas derived from wild-type embryonic stem (ES) cells, K-ras null (K-ras(-/-)) ES cells, and K-ras(-/-) ES cells that stably reexpress either wild-type K-ras(gly12) or oncogenic K-ras(val12). K-ras(-/-) and K-ras(val12) teratomas were significantly larger than teratomas that expressed wild-type K-ras, contained significantly higher proportions of undifferentiated embryonal carcinoma-like cells, and showed significantly increased mitotic activity. However, K-ras(val12) but not K-ras(-/-) teratomas exhibited significantly higher levels of apoptosis than wild-type teratomas. K-ras(-/-) and K-ras(val12) ES cells showed a higher capacity for stem cell self-renewal in vitro compared with wild-type ES cells, and reexpression of K-ras(gly12) in K-ras(-/-) ES cells restored the K-ras(-/-) phenotype to wild-type values. Thus, in view of evidence that tumors can derive from tissue stem cells and that tumors harbor "cancer stem cells," aberrant K-ras expression could promote neoplastic progression by increasing their capacity for self-renewal.


Assuntos
Genes Supressores de Tumor , Genes ras/genética , Teratoma/genética , Teratoma/patologia , Animais , Diferenciação Celular , Feminino , Deleção de Genes , Genótipo , Camundongos , Mitose , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...