Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Med Chem ; 65(19): 12956-12969, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36167503

RESUMO

In this work, cysteine staples were used as a late-stage functionalization strategy to diversify peptides and build conjugates targeting the melanocortin G-protein-coupled receptors [melanocortin receptor-1 (MC1R) and MC3R-MC5R]. Monocyclic and bicyclic agonists based on sunflower trypsin inhibitor-1 were used to generate a selection of stapled peptides that were evaluated for binding (pKi) and functional activation (pEC50) of the melanocortin receptor subtypes. Stapled peptides generally had improved activity, with aromatic stapled peptides yielding selective MC1R agonists, including a xylene-stapled peptide (2) with an EC50 of 1.9 nM for MC1R and >150-fold selectivity for MC3R and MC4R. Selected stapled peptides were further functionalized with linkers and payloads, generating a series of conjugated peptides with potent MC1R activity, including one pyridazine-functionalized peptide (21) with picomolar activity at MC1R (Ki 58 pM; EC50 < 9 pM). This work demonstrates that staples can be used as modular synthetic tools to tune potency and selectivity in peptide-based drug design.


Assuntos
Piridazinas , Receptor Tipo 1 de Melanocortina , Cisteína , Melanocortinas , Peptídeos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade , Xilenos
2.
Bioorg Med Chem ; 65: 116782, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512484

RESUMO

Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos
3.
J Med Chem ; 64(14): 9906-9915, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34197114

RESUMO

We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
4.
Adv Sci (Weinh) ; 7(24): 2002997, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344141

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease that can lead to irreversible liver cirrhosis and cancer. Early diagnosis of NASH is vital to detect disease before it becomes life-threatening, yet noninvasively differentiating NASH from simple steatosis is challenging. Herein, bifunctional probes have been developed that target the hepatocyte-specific asialoglycoprotein receptor (ASGPR), the expression of which decreases during NASH progression. The results show that the probes allow longitudinal, noninvasive monitoring of ASGPR levels by positron emission tomography in the newly developed rat model of NASH. The probes open new possibilities for research into early diagnosis of NASH and development of drugs to slow or reverse its progression.

5.
Nat Commun ; 11(1): 5425, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110077

RESUMO

Transcription factors are key protein effectors in the regulation of gene transcription, and in many cases their activity is regulated via a complex network of protein-protein interactions (PPI). The chemical modulation of transcription factor activity is a long-standing goal in drug discovery but hampered by the difficulties associated with the targeting of PPIs, in particular when extended and flat protein interfaces are involved. Peptidomimetics have been applied to inhibit PPIs, however with variable success, as for certain interfaces the mimicry of a single secondary structure element is insufficient to obtain high binding affinities. Here, we describe the design and characterization of a stabilized protein tertiary structure that acts as an inhibitor of the interaction between the transcription factor TEAD and its co-repressor VGL4, both playing a central role in the Hippo signalling pathway. Modification of the inhibitor with a cell-penetrating entity yielded a cell-permeable proteomimetic that activates cell proliferation via regulation of the Hippo pathway, highlighting the potential of protein tertiary structure mimetics as an emerging class of PPI modulators.


Assuntos
Peptidomiméticos , Fatores de Transcrição/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Hippo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 10(1): 13575, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782331

RESUMO

Cardiac progenitor cells (CPCs), capable of differentiating into multiple cardiac cell types including cardiomyocytes (CMs), endothelial cells, and smooth muscle cells, are promising candidates for cardiac repair/regeneration. In vitro model systems where cells are grown in a more in vivo-like environment, such as 3D cultures, have been shown to be more predictive than 2D culture for studying cell biology and disease pathophysiology. In this report, we focused on using Wnt inhibitors to study the differentiation of human iPSC-CPCs under 2D or 3D culture conditions by measuring marker protein and gene expression as well as intracellular Ca2+ oscillation. Our results show that the 3D culture with aligned nanofiber scaffolds, mimicing the architecture of the extracellular matrix of the heart, improve the differentiation of iPSC-CPCs to functional cardiomyocytes induced by Wnt inhibition, as shown with increased number of cardiac Troponin T (cTnT)-positive cells and synchronized intracellular Ca2+ oscillation. In addition, we studied if 3D nanofiber culture can be used as an in vitro model for compound screening by testing a number of other differentiation factors including a ALK5 inhibitor and inhibitors of BMP signaling. This work highlights the importance of using a more relevant in vitro model and measuring not only the expression of marker proteins but also the functional readout in a screen in order to identify the best compounds and to investigate the resulting biology.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Nanofibras/química , Células-Tronco/citologia , Alicerces Teciduais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
7.
J Med Chem ; 63(16): 8809-8823, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32134646

RESUMO

Artificial intelligence offers promising solutions for property prediction, compound design, and retrosynthetic planning, which are expected to significantly accelerate the search for pharmacologically relevant molecules. Here, we investigate aspects of artificial intelligence based de novo design pertaining to its integration into real-life workflows. First, different chemical spaces were used as training sets for reinforcement learning (RL) in combination with different reward functions. With the trained neuronal networks different biologically active molecules could be regenerated. Excluding molecules with substructures such as five-membered rings from training spaces nevertheless produced results containing these moieties. Furthermore, different scoring functions in RL were investigated and produced different design ensembles. In summary, some of these design proposals are close in chemical space to the query, thus supporting lead optimization, while 3D-shape or QSAR (quantitative structure-activity relationship) models produced significantly different proposals by sampling a broader region of the chemical space, thus supporting lead generation. Therefore, RL provides a good framework to tailored design approaches for different discovery phases.


Assuntos
Química Farmacêutica/métodos , Desenho de Fármacos , Redes Neurais de Computação , Compostos Orgânicos/química , Bases de Dados de Compostos Químicos , Conjuntos de Dados como Assunto , Inibidores do Fator Xa/química
8.
J Am Chem Soc ; 142(10): 4904-4915, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32058716

RESUMO

"Hot loop" protein segments have variable structure and conformation and contribute crucially to protein-protein interactions. We describe a new hot loop mimicking modality, termed PepNats, in which natural product (NP)-inspired structures are incorporated as conformation-determining and -restricting structural elements into macrocyclic hot loop-derived peptides. Macrocyclic PepNats representing hot loops of inducible nitric oxide synthase (iNOS) and human agouti-related protein (AGRP) were synthesized on solid support employing macrocyclization by imine formation and subsequent stereoselective 1,3-dipolar cycloaddition as key steps. PepNats derived from the iNOS DINNN hot loop and the AGRP RFF hot spot sequence yielded novel and potent ligands of the SPRY domain-containing SOCS box protein 2 (SPSB2) that binds to iNOS, and selective ligands for AGRP-binding melanocortin (MC) receptors. NP-inspired fragment absolute configuration determines the conformation of the peptide part responsible for binding. These results demonstrate that combination of NP-inspired scaffolds with peptidic epitopes enables identification of novel hot loop mimics with conformationally constrained and biologically relevant structure.


Assuntos
Peptídeos Cíclicos/metabolismo , Receptores de Melanocortina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/metabolismo , Epitopos , Humanos , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Ligação Proteica , Conformação Proteica , Estereoisomerismo
9.
Angew Chem Int Ed Engl ; 59(14): 5626-5631, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31917506

RESUMO

An assessment of the C-H activation catalyst [(COD)Ir(IMes)(PPh3 )]PF6 (COD=1,5-cyclooctadiene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) in the deuteration of phenyl rings containing different functional directing groups is divulged. Competition experiments have revealed a clear order of the directing groups in the hydrogen isotope exchange (HIE) with an iridium (I) catalyst. Through DFT calculations the iridium-substrate coordination complex has been identified to be the main trigger for reactivity and selectivity in the competition situation with two or more directing groups. We postulate that the competition concept found in this HIE reaction can be used to explain regioselectivities in other transition-metal-catalyzed functionalization reactions of complex drug-type molecules as long as a C-H activation mechanism is involved.

10.
Stem Cells Transl Med ; 9(1): 47-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31508905

RESUMO

Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post-MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell-derived CPC model to screen a 10,000-compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time-of-differentiation-dependent effect on the HuES6-derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores do Ácido Retinoico/agonistas , Células-Tronco/metabolismo , Humanos , Fenótipo
11.
Nat Rev Drug Discov ; 19(5): 353-364, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31801986

RESUMO

Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the 'grand challenges' in small-molecule drug discovery with AI and the approaches to address them.


Assuntos
Inteligência Artificial , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos
12.
Medchemcomm ; 10(9): 1550-1568, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31673315

RESUMO

An increasing focus on complex biology to cure diseases rather than merely treat symptoms has transformed how drug discovery can be approached. Instead of activating or blocking protein function, a growing repertoire of drug modalities can be leveraged or engineered to hijack cellular processes, such as translational regulation or degradation mechanisms. Drug hunters can therefore access a wider arsenal of modes-of-action to modulate biological processes and this review summarises these emerging strategies by highlighting the most representative examples of these approaches.

13.
Cell Stem Cell ; 24(6): 895-907.e6, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-30930147

RESUMO

We have previously developed a high-throughput bioengineered human cardiac organoid (hCO) platform, which provides functional contractile tissue with biological properties similar to native heart tissue, including mature, cell-cycle-arrested cardiomyocytes. In this study, we perform functional screening of 105 small molecules with pro-regenerative potential. Our findings reveal surprising discordance between our hCO system and traditional 2D assays. In addition, functional analyses uncovered detrimental effects of many hit compounds. Two pro-proliferative small molecules without detrimental impacts on cardiac function were identified. High-throughput proteomics in hCO revealed synergistic activation of the mevalonate pathway and a cell-cycle network by the pro-proliferative compounds. Cell-cycle reentry in hCO and in vivo required the mevalonate pathway as inhibition of the mevalonate pathway with a statin attenuated pro-proliferative effects. This study highlights the utility of human cardiac organoids for pro-regenerative drug development, including identification of underlying biological mechanisms and minimization of adverse side effects.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ácido Mevalônico/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Organoides/citologia , Ciclo Celular , Proliferação de Células , Células Cultivadas , Ensaios de Triagem em Larga Escala , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Proteômica , Regeneração , Transdução de Sinais
14.
Stem Cells ; 37(7): 958-972, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932271

RESUMO

Direct in vivo reprogramming of cardiac fibroblasts into myocytes is an attractive therapeutic intervention in resolving myogenic deterioration. Current transgene-dependent approaches can restore cardiac function, but dependence on retroviral delivery and persistent retention of transgenic sequences are significant therapeutic hurdles. Chemical reprogramming has been established as a legitimate method to generate functional cell types, including those of the cardiac lineage. Here, we have extended this approach to generate progenitor cells that can differentiate into endothelial cells and cardiomyocytes using a single inhibitor protocol. Depletion of terminally differentiated cells and enrichment for proliferative cells result in a second expandable progenitor population that can robustly give rise to myofibroblasts and smooth muscle. Deployment of a genome-wide knockout screen with clustered regularly interspaced short palindromic repeats-guide RNA library to identify novel mediators that regulate the reprogramming revealed the involvement of DNA methyltransferase 1-associated protein 1 (Dmap1). Loss of Dmap1 reduced promoter methylation, increased the expression of Nkx2-5, and enhanced the retention of self-renewal, although further differentiation is inhibited because of the sustained expression of Cdh1. Our results hence establish Dmap1 as a modulator of cardiac reprogramming and myocytic induction. Stem Cells 2019;37:958-972.


Assuntos
Benzamidas/farmacologia , Sistemas CRISPR-Cas , Reprogramação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Fibroblastos/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Proteínas Repressoras/genética , Células-Tronco/efeitos dos fármacos , Animais , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes/métodos , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso/citologia , Músculo Liso/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
15.
J Med Chem ; 62(9): 4312-4324, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30869888

RESUMO

5-Lipoxygenase activating protein (FLAP) inhibitors attenuate 5-lipoxygenase pathway activity and reduce the production of proinflammatory and vasoactive leukotrienes. As such, they are hypothesized to have therapeutic benefit for the treatment of diseases that involve chronic inflammation including coronary artery disease. Herein, we disclose the medicinal chemistry discovery and the early clinical development of the FLAP inhibitor AZD5718 (12). Multiparameter optimization included securing adequate potency in human whole blood, navigation away from Ames mutagenic amine fragments while balancing metabolic stability and PK properties allowing for clinically relevant exposures after oral dosing. The superior safety profile of AZD5718 compared to earlier frontrunner compounds allowed us to perform a phase 1 clinical study in which AZD5718 demonstrated a dose dependent and greater than 90% suppression of leukotriene production over 24 h. Currently, AZD5718 is evaluated in a phase 2a study for treatment of coronary artery disease.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Pirazóis/uso terapêutico , Inibidores da Proteína Ativadora de 5-Lipoxigenase/química , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacocinética , Animais , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Cães , Descoberta de Drogas , Feminino , Humanos , Leucotrieno B4/antagonistas & inibidores , Masculino , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade
16.
ChemMedChem ; 14(8): 810-822, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30768867

RESUMO

Innovative therapeutic modalities for pharmacological intervention of transforming growth factorâ€…ß (TGFß)-dependent diseases are of great value. b-Annelated 1,4-dihydropyridines (DHPs) might be such a class, as they induce TGFß receptor type II degradation. However, intrinsic drawbacks are associated with this compound class and were systematically addressed in the presented study. It was possible to install polar functionalities and bioisosteric moieties at distinct sites of the molecules while maintaining TGFß-inhibitory activities. The introduction of a 2-amino group or 7-N-alkyl modification proved to be successful strategies. Aqueous solubility was improved by up to seven-fold at pH 7.4 and 200-fold at pH 3 relative to the parent ethyl 4-(biphenyl-4-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate. The therapeutic potential of the presented DHPs was further underscored in view of a potential dual mode of action: The differentiation of committed human iPSC-derived cardiac progenitor cells (CPCs) was potently stimulated, and the rescue of cardiac fibrosis phenotypes was observed in engineered heart tissue (EHT) constructs.


Assuntos
Di-Hidropiridinas/química , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Diferenciação Celular/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/farmacologia , Desenho de Fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Ratos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/antagonistas & inibidores , Proteínas Smad/metabolismo , Solubilidade , Relação Estrutura-Atividade , Engenharia Tecidual , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/metabolismo
17.
J Mol Cell Cardiol ; 127: 204-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597148

RESUMO

Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proliferação de Células , DNA/biossíntese , Humanos , Processamento de Imagem Assistida por Computador , Fenótipo , Ploidias
18.
J Med Chem ; 61(8): 3674-3684, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29605997

RESUMO

Ultrastable cyclic peptide frameworks offer great potential for drug design due to their improved bioavailability compared to their linear analogues. Using the sunflower trypsin inhibitor-1 (SFTI-1) peptide scaffold in combination with systematic N-methylation of the grafted pharmacophore led to the identification of novel subtype selective melanocortin receptor (MCR) agonists. Multiple bicyclic peptides were synthesized and tested toward their activity at MC1R and MC3-5R. Double N-methylated compound 18 showed a p Ki of 8.73 ± 0.08 ( Ki = 1.92 ± 0.34 nM) and a pEC50 of 9.13 ± 0.04 (EC50 = 0.75 ± 0.08 nM) at the human MC1R and was over 100 times more selective for MC1R. Nuclear magnetic resonance structural analysis of 18 emphasized the role of peptide bond N-methylation in shaping the conformation of the grafted pharmacophore. More broadly, this study highlights the potential of cyclic peptide scaffolds for epitope grafting in combination with N-methylation to introduce receptor subtype selectivity in the context of peptide-based drug discovery.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/agonistas , Desenho de Fármacos , Células HEK293 , Helianthus/química , Humanos , Metilação , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
19.
Nat Rev Drug Discov ; 16(10): 681-698, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28935911

RESUMO

The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.


Assuntos
Produtos Biológicos/química , Técnicas Biossensoriais/métodos , Descoberta de Drogas/métodos , Animais , Produtos Biológicos/metabolismo , Técnicas Biossensoriais/tendências , Descoberta de Drogas/tendências , Humanos
20.
Chem Commun (Camb) ; 53(77): 10656-10659, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28905052

RESUMO

Macrocyclic peptides have promising therapeutic potential but the scaling up of their chemical synthesis is challenging. The cyanobactin macrocyclase PatGmac is an efficient tool for production but is limited to substrates containing 6-11 amino acids and at least one thiazoline or proline. Here we report a new cyanobactin macrocyclase that can cyclize longer peptide substrates and those not containing proline/thiazoline and thus allows exploring a wider chemical diversity.


Assuntos
Compostos Macrocíclicos/síntese química , Oscillatoria/enzimologia , Peptídeos Cíclicos/síntese química , Proteínas de Bactérias , Ciclização , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Simulação de Dinâmica Molecular , Oscillatoria/metabolismo , Fragmentos de Peptídeos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...