Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Chromatogr A ; 1715: 464597, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183784

RESUMO

Ion mobility (IM) separations, especially when combined with mass spectrometry, offer the opportunity for the rapid analysis and characterization of mixtures. However, the limited resolution afforded by many IM systems means that in practice applications may be limited. Here we have employed an IM separation on a high-resolution cyclic IM device with MS/MS to separate and characterize mixtures of sulfated isomers of tyrosine and associated metabolites containing multiple sulfated isoforms present in reaction mixtures. The cIMS device allowed ions, not resolved using a single pass, to be subjected to multiple passes, enabling the resolution of those with similar collision cross sections (CCS). Predicted single pass CCS values calculated for the isomers likely to be present in these mixtures showed only small differences between them, ranging between of between 0.1 - 0.7 % depending on structure. These small differences highlight the high degree of mobility resolution required for separating the isomers. Experimentally different isoforms of tyrosine sulfate and sulfated tyrosine metabolites could be sufficiently resolved via multipass separations (3-35 passes). This degree of separation provided resolving powers of up to 384 CCS/ΔCCS for sulfated dopamine which enabled good MS/MS spectra to be generated. In human urine the presence of a single sulfated form of tyrosine was detected and identified as the O-sulfate after 3 passes based on the synthetic standard. Of the other tyrosine-related sulfates for which synthetic standards had been prepared only dopamine sulfate was detected in this sample.


Assuntos
Sulfatos , Espectrometria de Massas em Tandem , Humanos , Dopamina , Isomerismo , Isoformas de Proteínas
2.
J Chromatogr A ; 1714: 464552, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113579

RESUMO

The untargeted global profiling of endogenous metabolites and lipids has the potential to increase knowledge and understanding in many areas of biology. LC-MS/MS is a key technology for such analyses however, several different LC methodologies, using different mobile phase compositions, are required to cover the diversity in polarity and analyte structure encountered in biological samples. Most notably many lipid screening methods make use of isopropanol (IPA) as a major component of mobile phases employed for comprehensive lipidomic profiling. In order to increase laboratory efficiency, and minimize opportunities for errors, a suite of methods, based on a single acetonitrile (ACN)-aqueous buffer mobile phase combination, has been developed. This mobile phase can be used for hydrophobic interaction liquid chromatography on an amide stationary phase (for polar analytes), reversed-phase (RP) LC analysis on a C8 stationary phase (for moderately polar-non-polar compounds) and RPLC using a CSH phenyl-hexyl bonded column (for lipids). All of these sub 10 minute separations had good throughput and reproducibility with CV's of analyte response <25 % whilst eliminating the need for complex mobile phase preparation and the use of IPA as an organic modifier for lipidomics. Advantages of removing IPA and replacing it with the ACN-based method were a 58 % increase in peak capacity for lipids, with improved resolution for the di- and triglycerides and cholesterol esters compared to current methods. Compared to the IPA-containing solvent system the ACN-based mobile phase also resulted in a 61 % increase in lipid feature detection. The utility of this "universal" mobile phase approach was demonstrated by its application to a rat toxicology study investigating the consequences of methapyrilene administration through on the endogenous metabolite profiles of plasma and urine. Methapyrilene and its metabolites were also profiled in these samples.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metapirileno , Ratos , Animais , Cromatografia Líquida/métodos , Lipidômica , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Lipídeos
3.
J Chromatogr A ; 1714: 464537, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157664

RESUMO

The use of HILIC-based separations for the analysis of polar metabolites in metabolic phenotyping studies is well established. Here, we demonstrate the increased coverage of the polar metabolome obtained by travelling wave (TW) ion mobility (IM) instruments combined with HILIC and mass spectrometry (MS) for metabotyping rat and mouse urine samples. Profiling was performed using either a linear TW IM-MS based instrument with a path length of 40 cm or an instrument with a cyclic travelling wave analyser (cIM) with a path length of 95 cm. Due to the added resolution afforded by using both the linear and cyclic IM geometries with MS detection (IM-MS) significant increases in feature count (m/z-tR pairs) were generally obtained compared to HILIC-MS alone. In addition, the use of both linear and cyclic IM-MS improved the quality of the mass spectra obtained as a result of the separation of co-eluting analytes. As would be expected from the increased path length of the cyclic IM-MS instrument compared to the linear device, the largest gains in feature detection were obtained for the HILIC-cIM-MS combination. By increasing the resolution of coeluting components, the cyclic IM-MS instrumentation also provided the largest improvement in the quality of the mass spectral data obtained. When applied to mouse urines obtained from both control and gefitinib-dosed mice, time-related changes were detected in those obtained from the treated animals that were not seen in the controls. Polar metabolites affected by drug administration included, but were not limited to, hypoxanthine, 1,3-dimethyluracil and acetylcarnitine. The changes seen in the relative concentrations of these endogenous metabolites appeared to be related to drug concentrations in the plasma and urine suggesting a pharmacometabodynamic link.


Assuntos
Líquidos Corporais , Metaboloma , Ratos , Camundongos , Animais , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos
4.
Heliyon ; 9(12): e22604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076065

RESUMO

There is an unmet need for improved diagnostic testing and risk prediction for cases of prostate cancer (PCa) to improve care and reduce overtreatment of indolent disease. Here we have analysed the serum proteome and lipidome of 262 study participants by liquid chromatography-mass spectrometry, including participants diagnosed with PCa, benign prostatic hyperplasia (BPH), or otherwise healthy volunteers, with the aim of improving biomarker specificity. Although a two-class machine learning model separated PCa from controls with sensitivity of 0.82 and specificity of 0.95, adding BPH resulted in a statistically significant decline in specificity for prostate cancer to 0.76, with half of BPH cases being misclassified by the model as PCa. A small number of biomarkers differentiating between BPH and prostate cancer were identified, including proteins in MAP Kinase pathways, as well as in lipids containing oleic acid; these may offer a route to greater specificity. These results highlight, however, that whilst there are opportunities for machine learning, these will only be achieved by use of appropriate training sets that include confounding comorbidities, especially when calculating the specificity of a test.

5.
J Chromatogr A ; 1696: 463966, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054638

RESUMO

Mobile phase selection is of critical importance in liquid chromatography - mass spectrometry (LC-MS) based studies, since it affects retention, chromatographic selectivity, ionization, limits of detection and quantification, and linear dynamic range. Generalized LC-MS mobile phase selection criteria, suitable for a broad class of chemical compounds, do not exist thus far. Here we have performed a large-scale qualitative assessment of the effect of solvent composition used for reversed-phase LC separations on electrospray ionization (ESI) response for 240 small molecular weight drugs, representing various chemical compound classes. Of these 240 analytes 224 were detectable using ESI. The main chemical structural features affecting ESI response were found to all be surface area or surface charge-related. Mobile phase composition was found to be less differentiating, although for some compounds a pH effect was noted. Unsurprisingly, chemical structure was found to be the dominant factor for ESI response for the majority of the investigated analytes, representing about 85% of the replicating detectable complement of the sample data set. A weak correlation between ESI response and structure complexity was observed. Solvents based on isopropanol, and those containing phosphoric or di- and trifluoracetic acids, performed relatively poorly in terms of chromatographic or ESI response, whilst the best performing 'generic' LC solvents were based on methanol, acetonitrile using formic acid and ammonium acetate as buffer components, consistent with current practice in many laboratories.


Assuntos
Ácidos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Solventes
6.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831393

RESUMO

Prostate cancer is the most common malignant tumour in men. Improved testing for diagnosis, risk prediction, and response to treatment would improve care. Here, we identified a proteomic signature of prostate cancer in peripheral blood using data-independent acquisition mass spectrometry combined with machine learning. A highly predictive signature was derived, which was associated with relevant pathways, including the coagulation, complement, and clotting cascades, as well as plasma lipoprotein particle remodeling. We further validated the identified biomarkers against a second cohort, identifying a panel of five key markers (GP5, SERPINA5, ECM1, IGHG1, and THBS1) which retained most of the diagnostic power of the overall dataset, achieving an AUC of 0.91. Taken together, this study provides a proteomic signature complementary to PSA for the diagnosis of patients with localised prostate cancer, with the further potential for assessing risk of future development of prostate cancer. Data are available via ProteomeXchange with identifier PXD025484.

7.
Xenobiotica ; 53(2): 93-105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36794569

RESUMO

The metabolism and pharmacokinetics of fasiglifam (TAK-875, 2-[(3S)-6-[[3-[2,6-dimethyl-4-(3-methylsulfonylpropoxy)phenyl]phenyl]methoxy]-2,3-dihydro-1-benzofuran-3-yl]acetic acid), a selective free fatty acid receptor 1 (FFAR1)/GPR40 agonist, were studied following intravenous (5 mg/kg) and oral administration (10 and 50 mg/kg) to male and female Sprague Dawley rats.Following intravenous dosing at 5 mg/kg, peak observed plasma concentrations of 8.8/9.2 µg/ml were seen in male and female rats respectively.Following oral dosing, peak plasma concentrations at 1 h of ca. 12.4/12.9 µg/ml for 10 mg/kg and 76.2/83.7 µg/ml for 50 mg/kg doses were obtained for male and female rats respectively. Drug concentrations then declined in the plasma of both sexes with t1/2's of 12.4 (male) and 11.2 h (female). Oral bioavailability was estimated to be 85-120% in males and females at both dose levels.Urinary excretion was low, but in a significant sex-related difference, female rats eliminated ca. 10-fold more drug-related material by this route.Fasiglifam was the principal drug-related compound in plasma, with 15 metabolites, including the acyl glucuronide, also detected. In addition to previously identified metabolites, a novel biotransformation, that produced a side-chain shortened metabolite via elimination of CH2 from the acetyl side chain was noted with implications for drug toxicity.


Assuntos
Receptores Acoplados a Proteínas G , Sulfonas , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Administração Intravenosa , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Injeções Intravenosas
8.
Anal Chem ; 95(8): 3909-3916, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791228

RESUMO

Metabolite identification represents a major bottleneck in contemporary metabolomics research and a step where critical errors may occur and pass unnoticed. This is especially the case for studies employing liquid chromatography-mass spectrometry technology, where there is increased concern on the validity of the proposed identities. In the present perspective article, we describe the issue and categorize the errors into two types: identities that show poor biological plausibility and identities that do not comply with chromatographic data and thus to physicochemical properties (usually hydrophobicity/hydrophilicity) of the proposed molecule. We discuss the problem, present characteristic examples, and propose measures to improve the situation.


Assuntos
Metabolômica , Cromatografia Líquida/métodos , Metabolômica/métodos , Espectrometria de Massas/métodos , Interações Hidrofóbicas e Hidrofílicas
9.
Talanta ; 254: 124089, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459869

RESUMO

The use of vacuum jacketed LC columns (VJC) to minimize on- and post-column band broadening to maximize chromatographic performance has been evaluated as a potential route to improved high throughput (HT) analysis. Here the use of the "VJC" approach has been applied to the HT bioanalysis of the antidiabetic GPR40 agonist drug fasiglifam in rat plasma samples obtained following a 5 mg/kg IV dose. The data obtained from a 1 minute VJC/MS-based analysis showed significant improvements compared to that from a conventional 2 minute UHPLC method for the drug. Notably, using VJC/MS with the rapid 1 min analysis provided a ca. 50% reduction in peak width coupled with a 2-5 fold higher peak response whilst doubling analytical throughput when compared to a conventional UHPLC/MS method. In addition, the increased resolution provided by the VJC system also improved the separation of fasiglifam from common matrix interferences such as co-extracted phospholipids thereby reducing the potential for matrix effects. The concatenation of these improvements suggests that the VJC approach may indeed provide a pathway to more sensitive, robust and high throughput drug bioanalysis, with particular advantages for drug discovery applications.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Vácuo , Cromatografia Líquida/métodos
10.
J Proteome Res ; 21(11): 2596-2608, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36264332

RESUMO

Lipids play a key role in many biological processes, and their accurate measurement is critical to unraveling the biology of diseases and human health. A high throughput HILIC-based (LC-MS) method for the semiquantitative screening of over 2000 lipids, based on over 4000 MRM transitions, was devised to produce an accessible and robust lipidomic screen for phospholipids in human plasma/serum. This methodology integrates many of the advantages of global lipid analysis with those of targeted approaches. Having used the method as an initial "wide class" screen, it can then be easily adapted for a more targeted analysis and quantification of key, dysregulated lipids. Robustness was assessed using 1550 continuous injections of plasma extracts onto a single column and via the evaluation of columns from 5 different batches of stationary phase. Initial screens in positive (239 lipids, 431 MRM transitions) and negative electrospray ionization (ESI) mode (232 lipids, 446 MRM transitions) were assessed for reproducibility, sensitivity, and dynamic range using analysis times of 8 min. The total number of lipids monitored using these screening methods was 433 with an overlap of 38 lipids in both modes. A polarity switching method for accurate quantification, using the same LC conditions, was assessed for intra- and interday reproducibility, accuracy, dynamic range, stability, carryover, dilution integrity, and matrix interferences and found to be acceptable. This polarity switching method was then applied to lipids important in the stratification of human prostate cancer samples.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Masculino , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Fosfolipídeos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35526348

RESUMO

Reversed-phase high performance thin-layer chromatography (RP-HPTLC) on C18 bonded silica gel was combined with desorption electrospray ionization (DESI) and high resolution time of flight mass spectrometry (HRToFMS) to detect, characterize and image (MSI) phytoecdysteroids (plant-derived insect moulting hormones) in ethanolic extracts of members of the Silene plant family. As seen previously for silica gel, DESI provided a simple and convenient method for recovering polar polyhydoxysteroids from RP-HPTLC plates for the purposes of both the MS and MSI of extracts obtained from three species of the Silene family (Silene otites, S. nutans and S. viridiflora). Using RP-HPTLC/DESI/MSI/HRToFMS a number of ecdysteroids, including 20-hydroxyecdysone, polypodine-B, 2-deoxy-20-hydroxyecdysone and 2-deoxyecdysone were identified in these extracts. Differences were noted in the mass spectra obtained depending upon both the stationary phase on which they were separated, and the temperatures used in the heated transfer line used for introduction into the ion source. Ecdysteroids detected after chromatography on C18 bonded silica showed increased fragmentation due to water loss compared to those imaged from silica. In addition, the benefits of the additional resolution provided by 2-dimensional TLC for increasing spectral quality compared to a 1-dimensional separation are demonstrated.


Assuntos
Ecdisteroides , Espectrometria de Massas por Ionização por Electrospray , Cromatografia em Camada Fina/métodos , Ecdisterona , Extratos Vegetais/química , Sílica Gel , Espectrometria de Massas por Ionização por Electrospray/métodos
12.
J Chromatogr A ; 1673: 463024, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35490462

RESUMO

Liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) has become the default platform for proteomics due to its specificity, sensitivity and sample compatibility. However, interactions between transition metals in LC systems and analytes containing phosphate groups result in poor chromatographic performance or even analyte loss. The use of systems where the metal surfaces had been treated with a hybrid inorganic/organic surface material to form an effective surface barrier mitigated these undesired interactions. When employed for the analysis of tryptic digests of Alpha and Beta Casein, along with synthetic "PhosphoMix" standards, the use of such a system showed significant improvements in chromatographic peak shape and analyte response together with superior spectral quality and sequence coverage. These improvements resulted in the detection of phosphorylated peptides ADEPSSESDLEIDK and ELSNSPLRENSFGSPLEFR from the PhosphoMix which went undetected with a standard, untreated LC system. The hybrid surface system thus offered significant advantages for the analysis of phosphopeptides compared to conventional LC/MS.


Assuntos
Fosfopeptídeos , Proteoma , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metais , Fosfopeptídeos/química , Proteômica/métodos
13.
J Chromatogr A ; 1669: 462921, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35272103

RESUMO

The use of hybrid surface technology (HST), applied to the metal surfaces of an ACQUITY™ UPLC™ system and column, designed to mitigate the chelation, poor peak shape and analyte loss seen with acidic phospholipids was investigated. Compared to a conventional system significant improvements in both sensitivity, recovery and peak shape were obtained following UPLC on a CSH C18 column when the HST was used for the analysis of lysophosphatidic acid (LPA), phosphatidic acid (PA), lysophosphatidylserine (LPS), phosphatidylserine (PS), phosphatidylinositol-monophosphates (PIP), ceramide phosphate (CerP) and sphingoid base phosphate (SPBP). The benefits in chromatographic performance provided by the HST were seen particularly at low concentrations of these analytes. The HST system and column reduced peak tailing by 65-80% and peak width by 70-86% for LPA and PA. Moreover, increased signal intensities of up to 12.7 times were observed for LPA with the HST approach compared to the equivalent untreated LC system and column. The application of this methodology to the analysis of chicken egg PA and brain porcine PS extracts were accompanied by similar improvements in data quality.


Assuntos
Ácidos Fosfatídicos , Fosfatidilserinas , Animais , Metais/química , Fosfatidilinositóis , Fosfatidilserinas/análise , Suínos , Tecnologia
14.
Methods Mol Biol ; 2396: 175-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34786683

RESUMO

Lipids play an important role in the energy storage, cellular signaling, and pathophysiology of diseases such as cancer, neurodegenerative diseases, infections, and diabetes. Due to high importance of diverse lipid classes in human health and disease, manipulating lipid abundance and composition is an important target for metabolic engineering. The extreme structural diversity of lipids in real biological samples is challenging for analytical techniques due to large difference in physicochemical properties of individual lipid species. This chapter describes lipidomic analysis of large sample sets requiring reliable and robust methodology. Rapid and robust methods facilitate the support of longitudinal studies allowing the transfer of methodology between laboratories. We describe a high-throughput reversed-phase LC-MS methodology using Ultra Performance Liquid Chromatography (UPLC®) with charged surface hybrid technology and accurate mass detection for high-throughput non-targeted lipidomics. The methodology showed excellent specificity, robustness, and reproducibility for over 100 LC-MS injections.


Assuntos
Lipidômica , Humanos , Lipídeos , Espectrometria de Massas , Reprodutibilidade dos Testes , Tecnologia
15.
J Proteome Res ; 21(3): 691-701, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968064

RESUMO

Reversed-phase UHPLC-MS is extensively employed for both the profiling of biological fluids and tissues to characterize lipid dysregulation in disease and toxicological studies. With conventional LC-MS systems the chromatographic performance and throughput are limited due to dispersion from the fluidic connections as well as radial and longitudinal thermal gradients in the LC column. In this study vacuum jacketed columns (VJC), positioned at the source of the mass spectrometer, were applied to the lipidomic analysis of plasma extracts. Compared to conventional UHPLC, the VJC-based methods offered greater resolution, faster analysis, and improved peak intensity. For a 5 min VJC analysis, the peak capacity increased by 66%, peak tailing reduced by up to 34%, and the number of lipids detected increased by 30% compared to conventional UHPLC. The narrower peaks, and thus increased resolution, compared to the conventional system resulted in a 2-fold increase in peak intensity as well a significant improvement in MS and MS/MS spectral quality resulting in a 22% increase in the number of lipids identified. When applied to mouse plasma samples, reproducibility of the lipid intensities in the pooled QC ranged from 1.8-12%, with no related drift in tR observed.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Lipídeos , Camundongos , Reprodutibilidade dos Testes , Vácuo
16.
Metabolites ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208076

RESUMO

The effects of intravenous gefitinib (10 mg/kg), an anilinoquinazoline thymidylate kinase inhibitor (TKI), selective for the epidermal growth factor receptor (EGFR), on the urinary metabotypes of mice were studied. We hypothesized that, in response to the administration of gefitinib, there might be significant changes in the excretion of many endogenous metabolites in the urine, which could be correlated with the plasma pharmacokinetics (PK) of the drug. In order to investigate this conjecture, urine from male C57 BL6 mice was collected before IV dosing (10 mg/kg) and at 0-3, 3-8, and 8-24 h post-dose. The samples were profiled by UPLC/IM/MS and compared with the profiles obtained from undosed control mice with the data analyzed using multivariate statistical analysis (MVA). This process identified changes in endogenous metabolites over time and these were compared with drug and drug metabolite PK and excretion. While the MVA of these UPLC/IM/MS data did indeed reveal time-related changes for endogenous metabolites that appeared to be linked to drug administration, this analysis did not highlight the presence of either the drug or its metabolites in urine. Endogenous metabolites affected by gefitinib administration were identified by comparison of mass spectral, retention time and ion mobility-derived collision cross section data (compared to authentic standards wherever possible). The changes in endogenous metabolites resulting from gefitinib administration showed both increases (e.g., tryptophan, taurocholic acid, and the dipeptide lysyl-arginine) and decreases (e.g., deoxyguanosine, 8-hydroxydeoxyguanosine, and asparaginyl-histidine) relative to the control animals. By 8-24 h, the post-dose concentrations of most metabolites had returned to near control values. From these studies, we conclude that changes in the amounts of endogenous metabolites excreted in the urine mirrored, to some extent, the plasma pharmacokinetics of the drug. This phenomenon is similar to pharmacodynamics, where the pharmacological effects are related to the drug concentrations, and by analogy, we have termed this effect "pharmacometabodynamics".

17.
Artigo em Inglês | MEDLINE | ID: mdl-34218093

RESUMO

The accurate determination of the pharmacokinetics (PK) of a candidate drug molecule is critical in both drug discovery and development. Over the last 30 years, the sensitivity and selectivity of LC/MS has resulted in it being established as the technology of choice for these studies. However, unwanted chemical interactions between analyte(s) and the metal components in a chromatography system can result in poor peak shape and reduction in signal response, which can adversely affect the analysis of low concentrations of drugs and their metabolites in biological samples. This study evaluated the benefits of employing an inert hybrid surface technology (HST) applied to the metallic components in the LC flow path, column frits and column wall to mitigate these interactions. The results obtained were compared with that of an identical conventional LC for the bioanalysis of two steroid phosphate drugs (dexamethasone phosphate and hydrocortisone phosphate) and an epidermal growth factor receptor (EGFR) inhibitor (gefitinib) in human plasma. The results showed that for the two steroid phosphates, the peak width was reduced by 20%, peak tailing factors reduced by up to 30% and the assay sensitivity improved by factors of 7.5 and 10. This resulted in a significant improvement in the limit of detection. The new LC system also improved the reproducibility of peak integration for gefitinib, thereby reducing assay coefficients of variation (%CV) from greater than 10% to less than 5% at the lower limit of quantification.


Assuntos
Cromatografia Líquida/instrumentação , Metais/química , Preparações Farmacêuticas , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Descoberta de Drogas , Humanos , Limite de Detecção , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/química , Reprodutibilidade dos Testes , Propriedades de Superfície
18.
Artigo em Inglês | MEDLINE | ID: mdl-34218094

RESUMO

Microsomal cytochrome P450 (CYP450) reductase enzymes play a major role in drug and xenobiotic metabolism. Mice which are deficient in hepatic CYP450 reductase serve as excellent models in understanding CYP450 drug metabolism and alterations in the underlying biology and function of these enzymes. A reversed-phase nano-bore UPLC-MS-based proteomic analysis, using an untargeted data independent approach (DIA), has been utilized for liver tissue extracts to evaluate differences between the proteomes of C57Bl6 wild type (WT) and hepatic P450 reductase mice (HRN™). Statistically curated, differentially expressed protein groups highlighted a variety of molecular and biological functions, including binding and catalytic related activities. Thus, elevations were seen for a number of CYP450 enzymes (Cyp2a5; Cyp2b10; Cyp2b19; Cyp2d26; Cyp2a5, Cyp2e1) in the liver extracts of HRN animals. In addition, the major urinary protein 2 (Mup2) was found to be present only in the livers of the HRN group, whilst enoyl-CoA hydratase domain-containing protein 2 (Echdc2) was similarly unique to the the WT livers. Pathway enrichment analysis of the WT liver data indicated perturbations of lipid and energy related pathways, which included bile acid biosynthesis, fatty acid omega oxidation and tricarboxylic acid (TCA) cycle as examples.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Proteoma , Animais , Ácidos e Sais Biliares/metabolismo , Cromatografia Líquida de Alta Pressão , Deleção de Genes , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteoma/análise , Proteoma/genética , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
19.
Anal Chem ; 93(30): 10644-10652, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279080

RESUMO

In UHPLC, frictional heating from the eluent flowing through the column at pressures of ca. 10-15 Kpsi causes radial diffusion via temperature differences between the center of the column and its walls. Longitudinal dispersion also occurs due to temperature gradients between the inlet and outlet. These effects cause band broadening but can be mitigated via a combination of vacuum jacketed stainless steel tubing, reduced column end nut mass, and a constant temperature in the column from heating the inlet fitting. Here, vacuum jacketed column (VJC) technology, employing a novel column housing located on the source of the mass spectrometer and minimized tubing from the column outlet to the electrospray probe, was applied to profiling metabolites in urine. For a 75 s reversed-phase gradient separation, the average peak widths for endogenous compounds in urine were 1.2 and 0.6 s for conventional LC/MS and VJC systems, respectively. The peak tailing factor was reduced from 1.25 to 1.13 when using the VJC system compared to conventional UHPLC, and the peak capacity increased from 65 to 120, with a 25% increase in features detected in urine. The increased resolving power of the VJC system reduced co-elution, simplifying MS and MS/MS spectra, providing a more confident metabolite identification. The increased LC performance also gave more intense MS peaks, with a 10-120% increase in response, improving the quality of the MS data and detection limits. Reducing the LC gradient duration to 37 s gave peak widths of ca. 0.4 s and a peak capacity of 84.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Difusão , Vácuo
20.
Anal Chem ; 93(20): 7413-7421, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33984239

RESUMO

1-ß-O-Acyl-glucuronides (AGs) are common metabolites of carboxylic acid-containing xenobiotics, including, e.g., many nonsteroidal anti-inflammatory drugs (NSAIDs). They are of concern to regulatory authorities because of the association of these metabolites with the hepatotoxicity that has resulted in drug withdrawal. One factor in assessing the potential risk posed by AGs is the rate of transacylation of the biosynthetic 1-ß-O-acyl form to the 2-, 3-, and 4-O-acyl isomers. While transacylation can be measured using 1H NMR spectroscopy or liquid chromatography-mass spectrometry (LC-MS), the process can be time consuming and involve significant method development. The separation of these positional isomers by ion mobility spectrometry (IMS) has the potential to allow their rapid analysis, but conventional instruments lacked the resolving power to do this. Prediction of the collision cross section (CCS) using a machine learning model suggested that greater IMS resolution might be of use in this area. Cyclic IMS was evaluated for separating mixtures of isomeric AGs of diclofenac and was compared with a conventional ultraperformance liquid chromatography (UPLC)-MS method as a means for studying transacylation kinetics. The resolution of isomeric AGs was not seen using a conventional traveling wave IMS device; however, separation was seen after several passes around a cyclic IMS. The cyclic IMS enabled the degradation of the 1-ß-O-acyl-isomer to be analyzed much more rapidly than by LC-MS. The ability of cyclic IMS to monitor the rate of AG transacylation at different pH values, without the need for a prior chromatographic separation, should allow high-throughput, real-time, monitoring of these types of reactions.


Assuntos
Glucuronídeos , Espectrometria de Mobilidade Iônica , Diclofenaco/análogos & derivados , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...