Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 87(3): 100236, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38307462

RESUMO

Salmonella infections are a leading cause of bacterial food-borne illness worldwide. Infections are highly associated with the consumption of contaminated food, and in particular, chicken meat. The severity of Salmonella infections depends on the presence of antimicrobial resistance genes and virulence factors. While there are many studies which have investigated Salmonella strains isolated from postharvest chicken samples, there is a gap in our understanding of the genetic properties that influence the persistence of Salmonella in preharvest and in particular their makeup of antimicrobial resistance genes and virulence factors. We used whole genome sequencing and hierarchical clustering to characterize and classify the genetic diversity of Salmonella enterica isolates (n = 55) recovered from the litter of commercial broiler chicken raised in four colocated broiler houses of one integrated farm over three consecutive flocks. The chicken were raised under a newly adopted "No Antibiotics Ever" program, and copper sulfate was administered via drinking water. In-silico serovar prediction identified three S. enterica serovars: Enteritidis (n = 12), Kentucky (n = 40), and Senftenberg (n = 3). Antimicrobial susceptibility testing revealed that only one S. Kentucky isolate was resistant to streptomycin, while the remaining isolates were susceptible to all antibiotics tested. Metal resistance operons, including copper and silver, were identified chromosomally and on plasmids in serovar Senftenberg and Kentucky isolates, respectively, while serovar Enteritidis carried several virulence factors on plasmids. Serovar Kentucky isolates harboring metal resistance operons were the only Salmonella isolates recovered from the litter of third flock cohort. These results suggest that there might be environmental selection for Salmonella strains carrying plasmid-associated metal resistance and virulence genes, which could play a role in their persistence in litter.


Assuntos
Anti-Infecciosos , Infecções por Salmonella , Salmonella enterica , Animais , Humanos , Galinhas/microbiologia , Esterco , Salmonella/genética , Antibacterianos/farmacologia , Infecções por Salmonella/microbiologia , Fatores de Virulência/genética , Farmacorresistência Bacteriana Múltipla/genética
2.
Microbiol Spectr ; 11(6): e0323623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882583

RESUMO

IMPORTANCE: Campylobacter is a leading cause of foodborne illness in the United States due to consumption of contaminated or mishandled food products, often associated with chicken meat. Campylobacter is common in the microbiota of avian and mammalian gut; however, acquisition of antimicrobial resistance genes (ARGs) and virulence factors (VFs) may result in strains that pose significant threat to public health. Although there are studies investigating the genetic diversity of Campylobacter strains isolated from post-harvest chicken samples, there are limited data on the genome characteristics of isolates recovered from preharvest broiler production. Here, we show that Campylobacter jejuni and Campylobacter coli differ in their carriage of antimicrobial resistance and virulence factors may also differ in their ability to persist in litter during consecutive grow-out of broiler flocks. We found that presence/absence of virulence factors needed for evasion of host defense mechanisms and gut colonization played an integral role in differentiating Campylobacter strains.


Assuntos
Anti-Infecciosos , Infecções por Campylobacter , Campylobacter , Animais , Antibacterianos/farmacologia , Fatores de Virulência/genética , Infecções por Campylobacter/veterinária , Galinhas , Farmacorresistência Bacteriana , Carne , Esterco , Anti-Infecciosos/farmacologia , Mamíferos
3.
Appl Environ Microbiol ; 88(9): e0251721, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416680

RESUMO

Fostering a "balanced" gut microbiome through the administration of beneficial microbes that can competitively exclude pathogens has gained a lot of attention and use in human and animal medicine. However, little is known about how microbes affect the horizontal gene transfer of antimicrobial resistance (AMR). To shed more light on this question, we challenged neonatal broiler chicks raised on reused broiler chicken litter-a complex environment made up of decomposing pine shavings, feces, uric acid, feathers, and feed-with Salmonella enterica serovar Heidelberg (S. Heidelberg), a model pathogen. Neonatal chicks challenged with S. Heidelberg and raised on reused litter were more resistant to S. Heidelberg cecal colonization than chicks grown on fresh litter. Furthermore, chicks grown on reused litter were at a lower risk of colonization with S. Heidelberg strains that encoded AMR on IncI1 plasmids. We used 16S rRNA gene sequencing and shotgun metagenomics to show that the major difference between chicks grown on fresh litter and those grown on reused litter was the microbiome harbored in the litter and ceca. The microbiome of reused litter samples was more uniform and enriched in functional pathways related to the biosynthesis of organic and antimicrobial molecules than that in fresh litter samples. We found that Escherichia coli was the main reservoir of plasmids encoding AMR and that the IncI1 plasmid was maintained at a significantly lower copy per cell in reused litter compared to fresh litter. These findings support the notion that commensal bacteria play an integral role in the horizontal transfer of plasmids encoding AMR to pathogens like Salmonella. IMPORTANCE Antimicrobial resistance spread is a worldwide health challenge, stemming in large part from the ability of microorganisms to share their genetic material through horizontal gene transfer. To address this issue, many countries and international organizations have adopted a One Health approach to curtail the proliferation of antimicrobial-resistant bacteria. This includes the removal and reduction of antibiotics used in food animal production and the development of alternatives to antibiotics. However, there is still a significant knowledge gap in our understanding of how resistance spreads in the absence of antibiotic selection and the role commensal bacteria play in reducing antibiotic resistance transfer. In this study, we show that commensal bacteria play a key role in reducing the horizontal gene transfer of antibiotic resistance to Salmonella, provide the identity of the bacterial species that potentially perform this function in broiler chickens, and also postulate the mechanism involved.


Assuntos
Galinhas , Salmonella enterica , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Transferência Genética Horizontal , RNA Ribossômico 16S , Salmonella/genética , Salmonella enterica/genética
4.
J Food Prot ; 85(3): 406-413, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818407

RESUMO

ABSTRACT: Campylobacter is a bacterial pathogen that causes human foodborne illnesses worldwide, and outbreaks have been associated with consumption of undercooked chicken livers. The objectives of this study were to compare two PCR assays of 250 Campylobacter isolates for identification to species, to assess antibiotic resistance of the isolates, and to analyze genetic diversity of the quinolone resistance determining regions (QRDRs) of the isolates. A double-blind design was used to identify the species of Campylobacter; 181 (72%) of the isolates were identified as Campylobacter jejuni, and 69 (28%) isolates were identified as Campylobacter coli by both PCR assays. A total of 93 (37.2%) isolates were resistant to at least one antibiotic. Among 88 C. jejuni isolates, 33 (18%) were resistant to nalidixic acid (NAL) and ciprofloxacin (CIP), 25 (14%) were resistant to tetracycline (TET), and 18 (10%) were resistant to NAL and TET. Two C. jejuni isolates were resistant to four of the tested antibiotics, and one isolate was resistant to five antibiotics. Two C. coli isolates were resistant to TET, and two were resistant to NAL, CIP, and TET. The amino acid sequences of the QRDRs for the isolates had eight point mutations and could be classified into 12 groups. Thirty-eight C. jejuni isolates resistant to NAL and CIP had a point mutation at residue 86 (substitution from threonine to isoleucine). However, six isolates without this substitution were resistant to NAL and/or CIP. Ten isolates with a point mutation at residue 86 were susceptible to NAL and CIP. This observation suggests that in addition to the substitution at residue 86 other mechanisms may confer resistance to quinolones. Further studies are needed to elucidate mechanisms for quinolone resistance in Campylobacter. The Campylobacter spp. isolated from chicken livers in this study were resistant to quinolones and other classes of antibiotics.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Quinolonas , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/epidemiologia , Galinhas/microbiologia , Método Duplo-Cego , Farmacorresistência Bacteriana , Georgia , Fígado , Testes de Sensibilidade Microbiana , Prevalência , Quinolonas/farmacologia
6.
mSystems ; 6(4): e0072921, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427525

RESUMO

The overuse and misuse of antibiotics in clinical settings and in food production have been linked to the increased prevalence and spread of antimicrobial resistance (AR). Consequently, public health and consumer concerns have resulted in a remarkable reduction in antibiotics used for food animal production. However, there are no data on the effectiveness of antibiotic removal in reducing AR shared through horizontal gene transfer (HGT). In this study, we used neonatal broiler chicks and Salmonella enterica serovar Heidelberg, a model food pathogen, to test if chicks raised antibiotic free harbor transferable AR. We challenged chicks with an antibiotic-susceptible S. Heidelberg strain using various routes of inoculation and determined if S. Heidelberg isolates recovered carried plasmids conferring AR. We used antimicrobial susceptibility testing and whole-genome sequencing (WGS) to show that chicks grown without antibiotics harbored an antimicrobial resistant S. Heidelberg population at 14 days after challenge and chicks challenged orally acquired AR at a higher rate than chicks inoculated via the cloaca. Using 16S rRNA gene sequencing, we found that S. Heidelberg infection perturbed the microbiota of broiler chicks, and we used metagenomics and WGS to confirm that a commensal Escherichia coli population was the main reservoir of an IncI1 plasmid acquired by S. Heidelberg. The carriage of this IncI1 plasmid posed no fitness cost to S. Heidelberg but increased its fitness when exposed to acidic pH in vitro. These results suggest that HGT of plasmids carrying AR shaped the evolution of S. Heidelberg and that antibiotic use reduction alone is insufficient to limit antibiotic resistance transfer from commensal bacteria to Salmonella enterica. IMPORTANCE The reported increase in antibiotic-resistant bacteria in humans has resulted in a major shift away from antibiotic use in food animal production. This shift has been driven by the assumption that removing antibiotics will select for antibiotic susceptible bacterial taxa, which in turn will allow the currently available antibiotic arsenal to be more effective. This change in practice has highlighted new questions that need to be answered to assess the effectiveness of antibiotic removal in reducing the spread of antibiotic resistance bacteria. This research demonstrates that antibiotic-susceptible Salmonella enterica serovar Heidelberg strains can acquire multidrug resistance from commensal bacteria present in the gut of neonatal broiler chicks, even in the absence of antibiotic selection. We demonstrate that exposure to acidic pH drove the horizontal transfer of antimicrobial resistance plasmids and suggest that simply removing antibiotics from food animal production might not be sufficient to limit the spread of antimicrobial resistance.

7.
Front Microbiol ; 12: 803150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069507

RESUMO

The level of pathogens in poultry litter used for raising broiler chickens is critical to the overall health of a broiler chicken flock and food safety. Therefore, it is imperative that methods used for determining bacterial concentration in litter are accurate and reproducible across studies. In this perspective, we discuss the shortcomings associated with current methods used for bacterial quantification and detection from litter and assess the efficacy of one method for pathogen and commensal (Campylobacter, Salmonella, Escherichia coli, and Enterococcus spp.) recovery. The limit of quantitation and detection for this method differed between pathogens, and the recovery rate (∼138-208%) was higher for Salmonella, E. coli, and Enterococcus compared to Campylobacter (24%). Our results suggest that pathogen recovery from litter is highly variable and pathogen concentrations need to be reported in dry weight before comparisons can be made between studies.

8.
PLoS One ; 13(8): e0202286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30169497

RESUMO

Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is a clinically-important serovar linked to food-borne illness, and commonly isolated from poultry. Investigations of a large, multistate outbreak in the USA in 2013 identified poultry litter (PL) as an important extra-intestinal environment that may have selected for specific S. Heidelberg strains. Poultry litter is a mixture of bedding materials and chicken excreta that contains chicken gastrointestinal (GI) bacteria, undigested feed, feathers, and other materials of chicken origin. In this study, we performed a series of controlled laboratory experiments which assessed the microevolution of two S. Heidelberg strains (SH-2813 and SH-116) in PL previously used to raise 3 flocks of broiler chickens. The strains are closely related at the chromosome level, differing from the reference genome by 109 and 89 single nucleotide polymorphisms/InDels, respectively. Whole genome sequencing was performed on 86 isolates recovered after 0, 1, 7 and 14 days of microevolution in PL. Only strains carrying an IncX1 (37kb), 2 ColE1 (4 and 6kb) and 1 ColpVC (2kb) plasmids survived more than 7 days in PL. Competition experiments showed that carriage of these plasmids was associated with increased fitness. This increased fitness was associated with an increased copy number of IncX1 and ColE1 plasmids. Further, all Col plasmid-bearing strains had hotspot mutations in 37 loci on the chromosome and in 3 loci on the IncX1 plasmid. Additionally, we observed a decrease in susceptibility to tobramycin, kanamycin, gentamicin, neomycin and fosfomycin for Col plasmid-bearing strains. Our study demonstrates how positive selection from poultry litter can change the evolutionary path of S. Heidelberg.


Assuntos
Galinhas/microbiologia , Aptidão Genética , Plasmídeos/genética , Salmonella enterica/genética , Criação de Animais Domésticos , Animais , Farmacorresistência Bacteriana Múltipla/genética , Evolução Molecular , Dosagem de Genes , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Mutação INDEL , Filogenia , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/microbiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Especificidade da Espécie
9.
Appl Environ Microbiol ; 83(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970227

RESUMO

Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the United States and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) dairy studies in 2002, 2007, and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter organisms was 72.2%, 82.1% of which were C. jejuni Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces, including clone SA, suggesting that these birds may play a role in the transmission of Campylobacter In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole-genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O) in the chromosome. These findings indicate that clone SA is widely distributed in both beef and dairy cattle and provide new insights into the molecular epidemiology of clone SA in ruminants.IMPORTANCEC. jejuni clone SA is a major cause of small-ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appear to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, we found a wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of preharvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health, as it is a zoonotic pathogen causing disease in both ruminants and humans.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/isolamento & purificação , Doenças dos Bovinos/epidemiologia , Controle de Pragas , Estorninhos , Animais , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Bovinos , Doenças dos Bovinos/microbiologia , Colorado/epidemiologia , Iowa/epidemiologia , Kansas/epidemiologia , Missouri/epidemiologia , Prevalência , Estudos Prospectivos , Estudos Retrospectivos , Texas/epidemiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...