Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1398706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756231

RESUMO

Introduction: Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods: To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results: We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion: We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.


Assuntos
Adaptação Fisiológica , Infecções por Mycoplasma , Mycoplasma hominis , Proteogenômica , Humanos , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Infecções por Mycoplasma/microbiologia , Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano , Fenótipo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
2.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240298

RESUMO

In patients with acute myeloid leukemia (AML), malignant cells modify the properties of multipotent mesenchymal stromal cells (MSCs), reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the role of MSCs in supporting leukemia cells and the restoration of normal hematopoiesis by analyzing ex vivo MSC secretomes at the onset of AML and in remission. The study included MSCs obtained from the bone marrow of 13 AML patients and 21 healthy donors. The analysis of proteins contained in the MSCs-conditioned medium demonstrated that secretomes of patient MSCs differed little between the onset of AML and remission; pronounced differences were observed between MSC secretomes of AML patients and healthy donors. The onset of AML was accompanied by a decrease in the secretion of proteins related to ossification, transport, and immune response. In remission, but not at the onset, secretion of proteins responsible for cell adhesion, immune response, and complement was reduced compared to donors. We conclude that AML causes crucial and, to a large extent, irreversible changes in the secretome of bone marrow MSCs ex vivo. In remission, functions of MSCs remain impaired despite the absence of tumor cells and the formation of benign hematopoietic cells.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Medula Óssea/metabolismo , Secretoma , Diferenciação Celular , Leucemia Mieloide Aguda/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
PLoS One ; 17(11): e0277819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413541

RESUMO

The epigenetics of bacteria, and bacteria with a reduced genome in particular, is of great interest, but is still poorly understood. Mycoplasma gallisepticum, a representative of the class Mollicutes, is an excellent model of a minimal cell because of its reduced genome size, lack of a cell wall, and primitive cell organization. In this study we investigated DNA modifications of the model object Mycoplasma gallisepticum and their roles. We identified DNA modifications and methylation motifs in M. gallisepticum S6 at the genome level using single molecule real time (SMRT) sequencing. Only the ANCNNNNCCT methylation motif was found in the M. gallisepticum S6 genome. The studied bacteria have one functional system for DNA modifications, the Type I restriction-modification (RM) system, MgaS6I. We characterized its activity, affinity, protection and epigenetic functions. We demonstrated the protective effects of this RM system. A common epigenetic signal for bacteria is the m6A modification we found, which can cause changes in DNA-protein interactions and affect the cell phenotype. Native methylation sites are underrepresented in promoter regions and located only near the -35 box of the promoter, which does not have a significant effect on gene expression in mycoplasmas. To study the epigenetics effect of m6A for genome-reduced bacteria, we constructed a series of M. gallisepticum strains expressing EGFP under promoters with the methylation motifs in their different elements. We demonstrated that m6A modifications of the promoter located only in the -10-box affected gene expression and downregulated the expression of the corresponding gene.


Assuntos
Mycoplasma gallisepticum , Tenericutes , Mycoplasma gallisepticum/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Tenericutes/genética , Metilação de DNA
4.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887188

RESUMO

Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.


Assuntos
Ativação de Neutrófilo , Aldeído Pirúvico , Carbonato de Cálcio , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Peróxido de Hidrogênio , Minerais , NADP , NADPH Oxidases/metabolismo , Aldeído Pirúvico/farmacologia , Albumina Sérica , Albumina Sérica Humana/química , Albumina Sérica Glicada
5.
Front Cell Infect Microbiol ; 12: 918557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873139

RESUMO

Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.


Assuntos
Mycoplasma hominis , Proteoma , Arginina/metabolismo , Lipoproteínas/metabolismo , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Proteoma/metabolismo , Proteômica
6.
Microorganisms ; 10(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35744677

RESUMO

Mycoplasmas are pathogenic, genome-reduced bacteria. The development of such fields of science as system and synthetic biology is closely associated with them. Despite intensive research of different representatives of this genus, genetic manipulations remain challenging in mycoplasmas. Here we demonstrate a single-plasmid transposon-based CRISPRi system for the repression of gene expression in mycoplasmas. We show that selected expression determinants provide a level of dCas9 that does not lead to a significant slow-down of mycoplasma growth. For the first time we describe the proteomic response of genome-reduced bacteria to the expression of exogenous dcas9. The functionality of the resulting vector is confirmed by targeting the three genes coding transcription factors-fur, essential spxA, whiA, and histone-like protein hup1 in Mycoplasma gallisepticum. As a result, the expression level of each gene was decreased tenfold and influenced the mRNA level of predicted targets of transcription factors. To illustrate the versatility of this vector, we performed a knockdown of metabolic genes in a representative member of another cluster of the Mycoplasma genus-Mycoplasma hominis. The developed CRISPRi system is a powerful tool to discover the functioning of genes that are essential, decipher regulatory networks and that can help to identify novel drug targets to control Mycoplasma infections.

7.
J Med Microbiol ; 71(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35037614

RESUMO

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.


Assuntos
Mycoplasma hominis , Proteoma , Timidina/metabolismo , Arginina , Humanos , Infecções por Mycoplasma , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Fenótipo , Fosfatos , Ribonucleosídeos
8.
Data Brief ; 39: 107658, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917708

RESUMO

Human multiforme glioblastoma is characterized by an unfavorable prognosis, low survival rate and extremely limited possibilities for therapy. Rat C6 glioma is an experimental model for the study of glioblastoma growth and invasion. It has been shown that the growth and development of the tumor is accompanied by changes in the surrounding normotypic tissues [1]. These changes create a favorable environment for the development of the tumor and give it an evolutionary advantage [2]. Description of changes occurring in normotypic cells of the body upon their contact with tumor cells is of great interest. We have grown C6 glioma cells and rat astrocytes, as well as astrocyte cells co-cultured together with C6 glioma. We performed proteome-wide LC-MS analysis of these experimental groups. The data includes LC-MS/MS raw files and exported MaxQuant and ProteinPilot search results with fasta. Dataset published in the PRIDE repository project accession PXD026776.

9.
Front Microbiol ; 12: 753760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867875

RESUMO

The structure and dynamics of bacterial nucleoids play important roles in regulating gene expression. Bacteria of class Mollicutes and, in particular, mycoplasmas feature extremely reduced genomes. They lack multiple structural proteins of the nucleoid, as well as regulators of gene expression. We studied the organization of Mycoplasma gallisepticum nucleoids in the stationary and exponential growth phases at the structural and protein levels. The growth phase transition results in the structural reorganization of M. gallisepticum nucleoid. In particular, it undergoes condensation and changes in the protein content. The observed changes corroborate with the previously identified global rearrangement of the transcriptional landscape in this bacterium during the growth phase transition. In addition, we identified that the glycolytic enzyme enolase functions as a nucleoid structural protein in this bacterium. It is capable of non-specific DNA binding and can form fibril-like complexes with DNA.

10.
PLoS One ; 16(10): e0258156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34624021

RESUMO

Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.


Assuntos
Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Oogênese , Proteínas Serina-Treonina Quinases/metabolismo , Telômero/metabolismo , Animais , Morte Celular , Centríolos/metabolismo , Embrião não Mamífero/metabolismo , Mitose , Ligação Proteica , RNA/metabolismo , Retroelementos/genética , Ribonucleoproteínas/metabolismo , Zigoto/metabolismo
11.
Genes (Basel) ; 12(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573293

RESUMO

There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the ß-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana Múltipla/genética , Gonorreia/tratamento farmacológico , Neisseria gonorrhoeae/genética , Substituição de Aminoácidos , Azitromicina/farmacologia , Gonorreia/microbiologia , Humanos , Mutação , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/isolamento & purificação , Penicilinas/farmacologia , Proteômica , Tetraciclina/farmacologia
12.
Toxins (Basel) ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946501

RESUMO

Non-proteinogenic neurotoxic amino acid ß-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and ß (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.


Assuntos
Diamino Aminoácidos/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Nostoc/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Toxinas de Cianobactérias , Regulação para Baixo/efeitos dos fármacos , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Nostoc/metabolismo , Nostoc/fisiologia , Fosforilação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteômica , Estresse Fisiológico/efeitos dos fármacos
13.
Data Brief ; 31: 106034, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32760766

RESUMO

Mycoplasma hominis is an opportunistic bacterium that can cause acute and chronic infections of the urogenital tract. This bacterium, like all other Mycoplasma species, is characterized by the reduced genome size, and, consequently, reduction of the main metabolic pathways. M. hominis cells cannot effectively use glucose as a carbon and energy source. Therefore, the main pathway of energy metabolism is the arginine dihydrolase pathway. However, several bacteria can use nucleosides as the sole energy source. Biochemical studies using Salmonella typhimurium have shown that three enzymes (thymidine phosphorylase, phosphopentose mutase and deoxyribose-phosphate aldolase) are involved in the thymidine catabolic pathway. All these enzymes are present in M. hominis. For understanding changes in the energy metabolism of M. hominis we performed shotgun proteome analysis of M. hominis cells in liquid medium with arginine or thymidine as a carbon source. LC-MS analysis was performed with an Ultimate 3000 Nano LC System (Thermo Fisher Scientific) coupled to a Q Exactive HF benchtop Orbitrap mass spectrometer (Thermo Fisher Scientific) via a nanoelectrospray source (Thermo Fisher Scientific). Data are available via ProteomeXchange with identifier PXD018714 (https://www.ebi.ac.uk/pride/archive/projects/PXD018714).

14.
Front Microbiol ; 11: 1460, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733408

RESUMO

Crohn's disease (CD) is a severe chronic immune-mediated granulomatous inflammatory disease of the gastrointestinal tract. The mechanisms of CD pathogenesis remain obscure. Metagenomic analysis of samples from CD patients revealed that several of them have the elevated level of Escherichia coli with adhesive-invasive phenotype (AIEC). Previously, we isolated an E. coli strain CD isolate ZvL2 from a patient with CD, which features AIEC phenotype. Here, we demonstrate that prolonged growth on propionate containing medium stimulates virulent properties of CD isolate ZvL2, while prolonged growth on glucose reduces these properties to levels indistinguishable from laboratory strain K-12 MG1655. Propionate presence also boosts the ability of CD isolate ZvL2 to penetrate and colonize macrophages. The effect of propionate is reversible, re-passaging of CD isolate on M9 medium supplemented with glucose leads to the loss of its virulent properties. Proteome analysis of CD isolate ZvL2 growth in medium supplemented with propionate or glucose revealed that propionate induces expression porins OmpA and OmpW, transcription factors PhoP and OmpR, and universal stress protein UspE, which were previously found to be important for macrophage colonization by enteropathogenic bacteria.

15.
Data Brief ; 31: 105853, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637477

RESUMO

Mycoplasma gallisepticum (MG) is one of the smallest free-living and self-replicating organisms, it is characterized by lack of cell wall and reduced genome size. As a result of genome reduction, MG has a limited variety of DNA-binding proteins and transcription factors. To investigate the dynamic changes of the proteomic profile of MG nucleoid, that may assist in revealing its mechanisms of functioning, regulation of chromosome organization and stress adaptation, a quantitative proteomic study was performed on MG nucleoids obtained from the cell culture in logarithmic and stationary phases of synchronous growth. MG cells were grown on a liquid medium with a 9 h starvation period. Nucleoids were obtained from the cell culture at the 26th and the 50th hour (logarithmic and stationary growth phases respectively) by sucrose density gradient centrifugation. LC-MS analysis was carried out on an Ultimate 3000 RSLCnano HPLC system connected to a Fusion Lumos mass spectrometer, controlled by XCalibur software (Thermo Fisher Scientific) via a nanoelectrospray source (Thermo Fisher Scientific). For comprehensive peptide library generation one sample from each biological replicate was run in DDA mode. Then, all the samples were run in a single LC-MS DIA run. Identification of DDA files and DIA quantitation was performed with MaxQuant and Skyline software, correspondingly. All raw data generated from IDA and DDA acquisitions are presented in the PRIDE database with identifier PXD019077.

17.
Microorganisms ; 8(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707712

RESUMO

Biooxidation of gold-bearing arsenopyrite concentrates, using acidophilic microbial communities, is among the largest commercial biohydrometallurgical processes. However, molecular mechanisms of microbial responses to sulfide raw materials have not been widely studied. The goal of this research was to gain insight into the defense strategies of the acidophilic bacterium Sulfobacillus thermotolerans, which dominates microbial communities functioning in industrial biooxidation processes at >35 °C, against the toxic effect of the high-arsenic gold-bearing sulfide concentrate. In addition to extreme metal resistance, this acidophile proved to be one of the most As-tolerant microorganisms. Comparative proteomic analysis indicated that 30 out of 33 differentially expressed proteins were upregulated in response to the ore concentrate, while the synthesis level of the functional proteins required for cell survival was not negatively affected. Despite a high level of cellular metal(loid) accumulation, no specific metal(loid)-resistant systems were regulated. Instead, several proteins involved in the metabolic pathways and stress response, including MBL fold metallo-hydrolase, sulfide:quinone oxidoreductase, and GroEL chaperonin, may play crucial roles in resistance to the sulfide ore concentrate and arsenic, in particular. This study provides the first data on the microbial responses to sulfide ore concentrates and advances our understanding of defense mechanisms against toxic compounds in acidophiles.

18.
Toxins (Basel) ; 12(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512731

RESUMO

All cyanobacteria produce a neurotoxic non-protein amino acid ß-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually "silent" under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the "starvation" state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA-a global transcriptional regulator-one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.


Assuntos
Diamino Aminoácidos/farmacologia , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo , Nostoc/efeitos dos fármacos , Proteômica , Cromatografia Líquida de Alta Pressão , Toxinas de Cianobactérias , Glutamato Sintase/metabolismo , Nostoc/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Espectrometria de Massas em Tandem
19.
Toxins (Basel) ; 12(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397431

RESUMO

The oldest prokaryotic photoautotrophic organisms, cyanobacteria, produce many different metabolites. Among them is the water-soluble neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (BMAA), whose biological functions in cyanobacterial metabolism are of fundamental scientific and practical interest. An early BMAA inhibitory effect on nitrogen fixation and heterocyst differentiation was shown in strains of diazotrophic cyanobacteria Nostoc sp. PCC 7120, Nostocpunctiforme PCC 73102 (ATCC 29133), and Nostoc sp. strain 8963 under conditions of nitrogen starvation. Herein, we present a comprehensive proteomic study of Nostoc (also called Anabaena) sp. PCC 7120 in the heterocyst formation stage affecting by BMAA treatment under nitrogen starvation conditions. BMAA disturbs proteins involved in nitrogen and carbon metabolic pathways, which are tightly co-regulated in cyanobacteria cells. The presented evidence shows that exogenous BMAA affects a key nitrogen regulatory protein, PII (GlnB), and some of its protein partners, as well as glutamyl-tRNA synthetase gltX and other proteins that are involved in protein synthesis, heterocyst differentiation, and nitrogen metabolism. By taking into account the important regulatory role of PII, it becomes clear that BMAA has a severe negative impact on the carbon and nitrogen metabolism of starving Nostoc sp. PCC 7120 cells. BMAA disturbs carbon fixation and the carbon dioxide concentrating mechanism, photosynthesis, and amino acid metabolism. Stress response proteins and DNA repair enzymes are upregulated in the presence of BMAA, clearly indicating severe intracellular stress. This is the first proteomic study of the effects of BMAA on diazotrophic starving cyanobacteria cells, allowing a deeper insight into the regulation of the intracellular metabolism of cyanobacteria by this non-protein amino acid.


Assuntos
Diamino Aminoácidos/toxicidade , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/toxicidade , Toxinas Marinhas/toxicidade , Nitrogênio/deficiência , Nostoc/efeitos dos fármacos , Proteoma , Proteômica , Ciclo do Carbono/efeitos dos fármacos , Toxinas de Cianobactérias , Fixação de Nitrogênio/efeitos dos fármacos , Nostoc/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
20.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349672

RESUMO

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Assuntos
Genoma , Hirudo medicinalis/genética , Proteínas e Peptídeos Salivares/genética , Animais , Anticoagulantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hirudo medicinalis/metabolismo , Sanguessugas/classificação , Sanguessugas/genética , Sanguessugas/metabolismo , Proteômica , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...