Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 27(6): 357-365, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33906430

RESUMO

Tissue engineering in reconstructive surgery seeks to generate bioartificial tissue substitutes. The arteriovenous (AV) loop allows the generation of axially vascularized tissue constructs. Cellular mechanisms of this vascularization process are largely unclear. In this study, we developed two different chamber models for intravital microscopy and imaging of the AV loop in the rat. Multiple design variations were implanted and the stability of the chamber and AV loop patency was tested in vivo. Our novel chamber facilitates repetitive observation of the AV loop using fluorescence-enhanced intravital microscopy. This technique can be used for daily evaluation of leukocyte-endothelial cell interactions, vascularization, and tissue formation in the AV loop model on 14 consecutive days. Therefore, our newly developed model for intravital microscopy will provide better understanding of cellular and molecular processes in tissue engineering in the AV loop. Moreover, it supports initiation of the novel approaches for therapeutic applications. Impact statement In the Arteriovenous (AV) loop, axially vascularized tissue can be generated and modified using different tissue engineering approaches. Cellular mechanisms of this vascularization process are largely unclear. We managed to develop an intravital microscopy model for long-term observation of intravascular and perivascular events in the AV loop. Leukocyte-endothelial cell interactions, vascularization, and tissue formation in the AV loop can now be evaluated on a day-to-day basis. This will provide better understanding of cellular and molecular processes happening during tissue engineering within the AV loop.


Assuntos
Microscopia Intravital , Engenharia Tecidual , Animais , Neovascularização Fisiológica , Ratos
2.
Materials (Basel) ; 10(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937633

RESUMO

The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...