Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2021: 2678134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688389

RESUMO

Deletion of pannexin-1 (Panx-1) leads not only to a reduction in endothelium-derived hyperpolarization but also to an increase in NO-mediated vasodilation. Therefore, we evaluated the participation of Panx-1-formed channels in the control of membrane potential and [Ca2+]i of endothelial cells. Changes in NO-mediated vasodilation, membrane potential, superoxide anion (O2 ·-) formation, and endothelial cell [Ca2+]i were analyzed in rat isolated mesenteric arterial beds and primary cultures of mesenteric endothelial cells. Inhibition of Panx-1 channels with probenecid (1 mM) or the Panx-1 blocking peptide 10Panx (60 µM) evoked an increase in the ACh (100 nM)-induced vasodilation of KCl-contracted mesenteries and in the phosphorylation level of endothelial NO synthase (eNOS) at serine 1177 (P-eNOSS1177) and Akt at serine 473 (P-AktS473). In addition, probenecid or 10Panx application activated a rapid, tetrodotoxin (TTX, 300 nM)-sensitive, membrane potential depolarization and [Ca2+]i increase in endothelial cells. Interestingly, the endothelial cell depolarization was converted into a transient spike after removing Ca2+ ions from the buffer solution and in the presence of 100 µM mibefradil or 10 µM Ni2+. As expected, Ni2+ also abolished the increment in [Ca2+]i. Expression of Nav1.2, Nav1.6, and Cav3.2 isoforms of voltage-dependent Na+ and Ca2+ channels was confirmed by immunocytochemistry. Furthermore, the Panx-1 channel blockade was associated with an increase in O2 ·- production. Treatment with 10 µM TEMPOL or 100 µM apocynin prevented the increase in O2 ·- formation, ACh-induced vasodilation, P-eNOSS1177, and P-AktS473 observed in response to Panx-1 inhibition. These findings indicate that the Panx-1 channel blockade triggers a novel complex signaling pathway initiated by the sequential activation of TTX-sensitive Nav channels and Cav3.2 channels, leading to an increase in NO-mediated vasodilation through a NADPH oxidase-dependent P-eNOSS1177, which suggests that Panx-1 may be involved in the endothelium-dependent control of arterial blood pressure.


Assuntos
Conexinas/metabolismo , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Vasodilatação , Animais , Artérias/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Conexinas/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , NADPH Oxidases/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo , Superóxidos/metabolismo , Tetrodotoxina/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
2.
Sci Rep ; 9(1): 7932, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138827

RESUMO

Blood flow distribution relies on precise coordinated control of vasomotor tone of resistance arteries by complex signalling interactions between perivascular nerves and endothelial cells. Sympathetic nerves are vasoconstrictors, whereas endothelium-dependent NO production provides a vasodilator component. In addition, resistance vessels are also innervated by sensory nerves, which are activated during inflammation and cause vasodilation by the release of calcitonin gene-related peptide (CGRP). Inflammation leads to superoxide anion (O2• -) formation and endothelial dysfunction, but the involvement of CGRP in this process has not been evaluated. Here we show a novel mechanistic relation between perivascular sensory nerve-derived CGRP and the development of endothelial dysfunction. CGRP receptor stimulation leads to pannexin-1-formed channel opening and the subsequent O2• --dependent connexin-based hemichannel activation in endothelial cells. The prolonged opening of these channels results in a progressive inhibition of NO production. These findings provide new therapeutic targets for the treatment of the inflammation-initiated endothelial dysfunction.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Conexinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Animais , Células Endoteliais/patologia , Inflamação/patologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais , Superóxidos/metabolismo
3.
Front Pharmacol ; 9: 546, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896104

RESUMO

Since the mechanism of human diabetic peripheral neuropathy and vascular disease in type 1 diabetes mellitus remains unknown, we assessed whether sympathetic transmitter overflow is altered by this disease and associated to vascular dysfunction. Diabetes was induced by streptozotocin (STZ)-treatment and compared to vehicle-treated rats. Aliquots of the ex vivo perfused rat arterial mesenteric preparation, denuded of the endothelial layer, were collected to quantify analytically sympathetic nerve co-transmitters overflow secreted by the isolated mesenteries of both groups of rats. Noradrenaline (NA), neuropeptide tyrosine (NPY), and ATP/metabolites were detected before, during, and after electrical field stimulation (EFS, 20 Hz) of the nerve terminals surrounding the mesenteric artery. NA overflow was comparable in both groups; however, basal or EFS-secreted ir-NPY was 26% reduced (p < 0.05) in diabetics. Basal and EFS-evoked ATP and adenosine (ADO) overflow to the arterial mesentery perfusate increased twofold and was longer lasting in diabetics; purine tissue content was 37.8% increased (p < 0.05) in the mesenteries from STZ-treated group of rats. Perfusion of the arterial mesentery vascular territory with 100 µM ATP, 100 nM 2-MeSADP, or 1 µM UTP elicited vasodilator responses of the same magnitude in controls or diabetics, but the increase in luminally accessible NO was 60-70% lower in diabetics (p < 0.05). Moreover, the concentration-response curve elicited by two NO donors was displaced downwards (p < 0.01) in diabetic rats. Parallel studies using primary cultures of endothelial cells from the arterial mesentery vasculature revealed that mechanical stimulation induced a rise in extracellular nucleotides, which in the cells from diabetic rats was larger and longer-lasting when comparing the extracellular release of ATP and ADO values to those of vehicle-treated controls. A 5 min challenge with purinergic agonists elicited a cell media NO rise, which was reduced in the endothelial cells from diabetic rats. Present findings provide neurochemical support for the diabetes-induced neuropathy and show that mesenteric endothelial cells alterations in response to mechanical stimulation are compatible with the endothelial dysfunction related to vascular disease progress.

4.
FASEB J ; 32(4): 2137-2147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29217667

RESUMO

Na+-Ca2+ exchanger (NCX) contributes to control the intracellular free Ca2+ concentration ([Ca2+]i), but the functional activation of NCX reverse mode (NCXrm) in endothelial cells is controversial. We evaluated the participation of NCXrm-mediated Ca2+ uptake in the endothelium-dependent vasodilation of rat isolated mesenteric arterial beds. In phenylephrine-contracted mesenteries, the acetylcholine (ACh)-induced vasodilation was abolished by treatment with the NCXrm blockers SEA0400, KB-R7943, or SN-6. Consistent with that, the ACh-induced hyperpolarization observed in primary cultures of mesenteric endothelial cells and in smooth muscle of isolated mesenteric resistance arteries was attenuated by KB-R7943 and SEA0400, respectively. In addition, both blockers abolished the NO production activated by ACh in intact mesenteric arteries. In contrast, the inhibition of NCXrm did not affect the vasodilator responses induced by the Ca2+ ionophore, ionomycin, and the NO donor, S-nitroso- N-acetylpenicillamine. Furthermore, SEA0400, KB-R7943, and a small interference RNA directed against NCX1 blunted the increase in [Ca2+]i induced by ACh or ATP in cultured endothelial cells. The analysis by proximity ligation assay showed that the NO-synthesizing enzyme, eNOS, and NCX1 were associated in endothelial cell caveolae of intact mesenteric resistance arteries. These results indicate that the activation of NCXrm has a central role in Ca2+-mediated vasodilation initiated by ACh in endothelial cells of resistance arteries.-Lillo, M. A., Gaete, P. S., Puebla, M., Ardiles, N. M., Poblete, I., Becerra, A., Simon, F., Figueroa, X. F. Critical contribution of Na+-Ca2+ exchanger to the Ca2+-mediated vasodilation activated in endothelial cells of resistance arteries.


Assuntos
Cálcio/metabolismo , Células Endoteliais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Vasodilatação , Animais , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/antagonistas & inibidores
5.
Biochem Biophys Res Commun ; 444(2): 189-94, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24440698

RESUMO

Wnt signaling has a crucial role in synaptic function at the central nervous system. Here we evaluate whether Wnts affect nitric oxide (NO) generation in hippocampal neurons. We found that non-canonical Wnt-5a triggers NO production; however, Wnt-3a a canonical ligand did not exert the same effect. Co-administration of Wnt-5a with the soluble Frizzled related protein-2 (sFRP-2) a Wnt antagonist blocked the NO production. Wnt-5a activates the non-canonical Wnt/Ca(2+) signaling through a mechanism that depends on Ca(2+) release from Ryanodine-sensitive internal stores. The increase in NO levels evoked by Wnt-5a promotes the insertion of the GluN2B subunit of the NMDA receptor (NMDAR) into the neuronal cell surface. To the best of our knowledge, this is the first time that Wnt-5a signaling is related to NO production, which in turn increases NMDARs trafficking to the cell surface.


Assuntos
Neurônios/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Wnt/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Células L , Proteínas de Membrana/farmacologia , Camundongos , Modelos Biológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/farmacologia , Proteína Wnt-5a
6.
Biol Reprod ; 90(2): 23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24352557

RESUMO

To assess the role of the P2X1 receptors (P2X1R) in the longitudinal and circular layers of the human vas deferens, ex vivo-isolated strips or rings were prepared from tissue biopsies to record isometric contractions. To ascertain its membrane distribution, tissue extracts were analyzed by immunoblotting following sucrose gradient ultracentrifugation. ATP, alpha,beta-methylene ATP, or electrical field stimulation elicited robust contractions of the longitudinal layer but not of the circular layer which demonstrated inconsistent responses. Alpha,beta-methylene ATP generated stronger and more robust contractions than ATP. In parallel, prostatic segments of the rat vas deferens were examined. The motor responses in both species were not sustained but decayed within the first minute, showing desensitization to additional applications. Cross-desensitization was established between alpha,beta-methylene ATP or ATP-evoked contractions and electrical field stimulation-induced contractions. Full recovery of the desensitized motor responses required more than 30 min and showed a similar pattern in human and rat tissues. Immunoblot analysis of the human vas deferens extracts revealed a P2X1R oligomer of approximately 200 kDa under nonreducing conditions, whereas dithiothreitol-treated extracts showed a single band of approximately 70 kDa. The P2X1R was identified in ultracentrifugation fractions containing 15%-29% sucrose; the receptor localized in the same fractions as flotillin-1, indicating that it regionalized into smooth muscle lipid rafts. In conclusion, ATP plays a key role in human vas deferens contractile responses of the longitudinal smooth muscle layer, an effect mediated through P2X1Rs.


Assuntos
Trifosfato de Adenosina/farmacologia , Microdomínios da Membrana/metabolismo , Contração Muscular , Músculo Liso/fisiologia , Receptores Purinérgicos P2X1/fisiologia , Ducto Deferente/fisiologia , Adulto , Idoso , Animais , Estimulação Elétrica , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X1/metabolismo , Ducto Deferente/efeitos dos fármacos , Ducto Deferente/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 297(1): H134-43, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429833

RESUMO

Epinephrine plays a key role in the control of vasomotor tone; however, the participation of the NO/cGMP pathway in response to beta-adrenoceptor activation remains controversial. To evaluate the involvement of the endothelium in the vascular response to epinephrine, we assessed NO production, endothelial NO synthase phosphorylation, and tissue accumulation of cGMP in the perfused arterial mesenteric bed of rat. Epinephrine elicited a concentration-dependent increase in NO (EC(50) of 45.7 pM), which was coupled to cGMP tissue accumulation. Both NO and cGMP production were blocked by either endothelium removal (saponin) or NO synthase inhibition (N(omega)-nitro-L-arginine). Blockade of beta(1)- and beta(2)-adrenoceptors with 1 microM propranolol or beta(3)-adrenoceptor with 10 nM SR 59230A displaced rightward the concentration-NO production curve evoked by epinephrine. Selective stimulation of beta(1)-, beta(2)-, or beta(3)-adrenoceptors also resulted in NO and cGMP production. Propranolol (1 microM) inhibited the rise in NO induced by isoproterenol or the beta(2)-adrenoceptor agonists salbutamol, terbutaline, or fenoterol. Likewise, 10 nM SR 59230A reduced the effects of the beta(3)-adrenoceptor agonists BRL 37344, CGP 12177, SR 595611A, or pindolol. The NO production induced by epinephrine and BRL 37344 was associated with the activation of the phosphatidylinositol 3-kinase/Akt pathway and phosphorylation of eNOS in serine 1177. In addition, in anaesthetized rats, bolus administration of isoproterenol, salbutamol, or BRL 37344 produced NO-dependent reductions in systolic blood pressure. These findings indicate that beta(1)-, beta(2)-, and beta(3)-adrenoceptors are coupled to the NO/cGMP pathway, highlighting the role of the endothelium in the vasomotor action elicited by epinephrine and related beta-adrenoceptor agonists.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Epinefrina/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Receptores Adrenérgicos beta/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , GMP Cíclico/biossíntese , Endotélio Vascular/fisiologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Luminescência , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Contração Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Circulação Esplâncnica/efeitos dos fármacos , Circulação Esplâncnica/fisiologia , Resistência Vascular/efeitos dos fármacos
8.
J Physiol ; 568(Pt 2): 539-51, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16081483

RESUMO

In the isolated rat mesenteric bed, the 1 min perfusion with 100 nm anandamide, a concentration that did not evoke vasorelaxation, elicited an acute release of 165.1 +/- 9.2 pmol nitric oxide (NO) that was paralleled by a 2-fold increase in cGMP tissue levels. The rise in NO released was mimicked by either (R)-(+)-methanandamide or the vanilloid receptor agonists resiniferatoxin and (E)-capsaicin but not by its inactive cis-isomer (Z)-capsaicin. The NO release elicited by either anandamide or capsaicin was reduced by the TRPV1 receptor antagonists 5'-iodoresiniferatoxin, SB 366791 and capsazepine as well as by the cannabinoid CB(1) receptor antagonists SR 141716A or AM251. The outflow of NO elicited by anandamide and capsaicin was also reduced by endothelium removal or NO synthase inhibition, suggesting the specific participation of endothelial TRPV1 receptors, rather than the novel endothelial TRPV4 receptors. Consistently, RT-PCR showed the expression of the mRNA coding for the rat TRPV1 receptor in the endothelial cell layer, in addition to its expression in sensory nerves. The participation of sensory nerves on the release of NO was precluded on the basis that neonatal denervation of the myenteric plexus sensory nerves did not modify the pattern of NO release induced by anandamide and capsaicin. We propose that low concentrations of anandamide, devoid of vasorelaxing effects, elicit an acute release of NO mediated predominantly by the activation of endothelial TRPV1 receptors whose physiological significance remains elusive.


Assuntos
Ácidos Araquidônicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Artéria Mesentérica Superior/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos , Anilidas/farmacologia , Animais , Antagonistas de Receptores de Canabinoides , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Cinamatos/farmacologia , GMP Cíclico/metabolismo , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides , Endotélio Vascular/metabolismo , Técnicas In Vitro , Masculino , Artéria Mesentérica Superior/metabolismo , Óxido Nítrico/metabolismo , Nitroarginina/farmacologia , Perfusão , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas , Pirazóis/farmacologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Rimonabanto , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA