Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(D1): D516-D522, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174603

RESUMO

Integrative research about multiple biochemical subsystems has significant potential to help advance biology, bioengineering and medicine. However, it is difficult to obtain the diverse data needed for integrative research. To facilitate biochemical research, we developed Datanator (https://datanator.info), an integrated database and set of tools for finding clouds of multiple types of molecular data about specific molecules and reactions in specific organisms and environments, as well as data about chemically-similar molecules and reactions in phylogenetically-similar organisms in similar environments. Currently, Datanator includes metabolite concentrations, RNA modifications and half-lives, protein abundances and modifications, and reaction rate constants about a broad range of organisms. Going forward, we aim to launch a community initiative to curate additional data. Datanator also provides tools for filtering, visualizing and exporting these data clouds. We believe that Datanator can facilitate a wide range of research from integrative mechanistic models, such as whole-cell models, to comparative data-driven analyses of multiple organisms.


Assuntos
Células/metabolismo , Bases de Dados Genéticas , Modelos Biológicos , Análise de Dados
2.
Curr Opin Syst Biol ; 7: 8-15, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29806041

RESUMO

Whole-cell dynamical models of human cells are a central goal of systems biology. Such models could help researchers understand cell biology and help physicians treat disease. Despite significant challenges, we believe that human whole-cell models are rapidly becoming feasible. To develop a plan for achieving human whole-cell models, we analyzed the existing models of individual cellular pathways, surveyed the biomodeling community, and reflected on our experience developing whole-cell models of bacteria. Based on these analyses, we propose a plan for a project, termed the Human Whole-Cell Modeling Project, to achieve human whole-cell models. The foundations of the plan include technology development, standards development, and interdisciplinary collaboration.

3.
J Neurotrauma ; 35(21): 2519-2529, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648987

RESUMO

Incomplete spinal cord injury (iSCI) often leads to partial disruption of spinal pathways that are important for motor control of walking. Persons with iSCI present with deficits in walking ability in part because of inconsistent leg kinematics during stepping. Although kinematic variability is important for normal walking, growing evidence indicates that excessive variability may limit walking ability and increase reliance on assistive devices (AD) after iSCI. The purpose of this study was to assess the effects of iSCI-induced impairments on kinematic variability during overground walking. We hypothesized that iSCI results in greater variability of foot and joint displacement during overground walking compared with controls. We further hypothesized that variability is larger in persons with limited walking speed and greater reliance on ADs. To test these hypotheses, iSCI and control subjects walked overground. Kinematic variability was quantified as step-to-step foot placement variability (end-point), and variability in hip-knee, hip-ankle, and knee-ankle joint space (angular coefficient of correspondence [ACC]). We characterized sensitivity of kinematic variability to cadence, auditory cue, and AD. Supporting our hypothesis, persons with iSCI exhibited greater kinematic variability than controls, which scaled with deficits in overground walking speed (p < 0.01). Significant correlation between ACC and end-point variability, and with walking speed, indicates that both are markers of walking performance. Moreover, hip-knee and hip-ankle ACC discriminated AD use, indicating that ACC may capture AD-specific control strategies. We conclude that increased variability of foot and joint displacement are indicative of motor impairment severity and may serve as therapeutic targets to restore walking after iSCI.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Perna (Membro)/fisiopatologia , Masculino , Pessoa de Meia-Idade , Caminhada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...