Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7023, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919265

RESUMO

Mechanics is known to play a fundamental role in many cellular and developmental processes. Beyond active forces and material properties, osmotic pressure is believed to control essential cell and tissue characteristics. However, it remains very challenging to perform in situ and in vivo measurements of osmotic pressure. Here we introduce double emulsion droplet sensors that enable local measurements of osmotic pressure intra- and extra-cellularly within 3D multicellular systems, including living tissues. After generating and calibrating the sensors, we measure the osmotic pressure in blastomeres of early zebrafish embryos as well as in the interstitial fluid between the cells of the blastula by monitoring the size of droplets previously inserted in the embryo. Our results show a balance between intracellular and interstitial osmotic pressures, with values of approximately 0.7 MPa, but a large pressure imbalance between the inside and outside of the embryo. The ability to measure osmotic pressure in 3D multicellular systems, including developing embryos and organoids, will help improve our understanding of its role in fundamental biological processes.


Assuntos
Líquido Extracelular , Peixe-Zebra , Animais , Pressão Osmótica , Emulsões , Embrião de Mamíferos
2.
Nat Mater ; 22(1): 135-143, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577855

RESUMO

Tissue morphogenesis, homoeostasis and repair require cells to constantly monitor their three-dimensional microenvironment and adapt their behaviours in response to local biochemical and mechanical cues. Yet the mechanical parameters of the cellular microenvironment probed by cells in vivo remain unclear. Here, we report the mechanics of the cellular microenvironment that cells probe in vivo and in situ during zebrafish presomitic mesoderm differentiation. By quantifying both endogenous cell-generated strains and tissue mechanics, we show that individual cells probe the stiffness associated with deformations of the supracellular, foam-like tissue architecture. Stress relaxation leads to a perceived microenvironment stiffness that decreases over time, with cells probing the softest regime. We find that most mechanical parameters, including those probed by cells, vary along the anteroposterior axis as mesodermal progenitors differentiate. These findings expand our understanding of in vivo mechanosensation and might aid the design of advanced scaffolds for tissue engineering applications.


Assuntos
Mesoderma , Peixe-Zebra , Animais , Mesoderma/fisiologia , Diferenciação Celular/fisiologia , Morfogênese , Microambiente Celular
3.
Nat Phys ; 18(10): 1240-1247, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37396880

RESUMO

Wave-like beating of eukaryotic cilia and flagella-threadlike protrusions found in many cells and microorganisms-is a classic example of spontaneous mechanical oscillations in biology. This type of self-organized active matter raises the question of the coordination mechanism between molecular motor activity and cytoskeletal filament bending. Here we show that in the presence of myosin motors, polymerizing actin filaments self-assemble into polar bundles that exhibit wave-like beating. Importantly, filament beating is associated with myosin density waves initiated at twice the frequency of the actin-bending waves. A theoretical description based on curvature control of motor binding to the filaments and of motor activity explains our observations in a regime of high internal friction. Overall, our results indicate that the binding of myosin to actin depends on the actin bundle shape, providing a feedback mechanism between the myosin activity and filament deformations for the self-organization of large motor filament assemblies.

4.
Nat Phys ; 17: 859-866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34367313

RESUMO

The physical state of embryonic tissues emerges from non-equilibrium, collective interactions among constituent cells. Cellular jamming, rigidity transitions and characteristics of glassy dynamics have all been observed in multicellular systems, but it is unclear how cells control these emergent tissue states and transitions, including tissue fluidization. Combining computational and experimental methods, here we show that tissue fluidization in posterior zebrafish tissues is controlled by the stochastic dynamics of tensions at cell-cell contacts. We develop a computational framework that connects cell behavior to embryonic tissue dynamics, accounting for the presence of extracellular spaces, complex cell shapes and cortical tension dynamics. We predict that tissues are maximally rigid at the structural transition between confluent and non-confluent states, with actively-generated tension fluctuations controlling stress relaxation and tissue fluidization. By directly measuring strain and stress relaxation, as well as the dynamics of cell rearrangements, in elongating posterior zebrafish tissues, we show that tension fluctuations drive active cell rearrangements that fluidize the tissue. These results highlight a key role of non-equilibrium tension dynamics in developmental processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...