Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
IEEE Trans Med Imaging ; 42(12): 3817-3832, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656651

RESUMO

Data-driven approaches recently achieved remarkable success in magnetic resonance imaging (MRI) reconstruction, but integration into clinical routine remains challenging due to a lack of generalizability and interpretability. In this paper, we address these challenges in a unified framework based on generative image priors. We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only. After training, the regularizer encodes higher-level domain statistics which we demonstrate by synthesizing images without data. Embedding the trained model in a classical variational approach yields high-quality reconstructions irrespective of the sub-sampling pattern. In addition, the model shows stable behavior when confronted with out-of-distribution data in the form of contrast variation. Furthermore, a probabilistic interpretation provides a distribution of reconstructions and hence allows uncertainty quantification. To reconstruct parallel MRI, we propose a fast algorithm to jointly estimate the image and the sensitivity maps. The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods, while preserving the flexibility with respect to sub-sampling patterns and allowing for uncertainty quantification.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos
2.
Radiology ; 307(2): e220425, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648347

RESUMO

Background MRI is a powerful diagnostic tool with a long acquisition time. Recently, deep learning (DL) methods have provided accelerated high-quality image reconstructions from undersampled data, but it is unclear if DL image reconstruction can be reliably translated to everyday clinical practice. Purpose To determine the diagnostic equivalence of prospectively accelerated DL-reconstructed knee MRI compared with conventional accelerated MRI for evaluating internal derangement of the knee in a clinical setting. Materials and Methods A DL reconstruction model was trained with images from 298 clinical 3-T knee examinations. In a prospective analysis, patients clinically referred for knee MRI underwent a conventional accelerated knee MRI protocol at 3 T followed by an accelerated DL protocol between January 2020 and February 2021. The equivalence of the DL reconstruction of the images relative to the conventional images for the detection of an abnormality was assessed in terms of interchangeability. Each examination was reviewed by six musculoskeletal radiologists. Analyses pertaining to the detection of meniscal or ligament tears and bone marrow or cartilage abnormalities were based on four-point ordinal scores for the likelihood of an abnormality. Additionally, the protocols were compared with use of four-point ordinal scores for each aspect of image quality: overall image quality, presence of artifacts, sharpness, and signal-to-noise ratio. Results A total of 170 participants (mean age ± SD, 45 years ± 16; 76 men) were evaluated. The DL-reconstructed images were determined to be of diagnostic equivalence with the conventional images for detection of abnormalities. The overall image quality score, averaged over six readers, was significantly better (P < .001) for the DL than for the conventional images. Conclusion In a clinical setting, deep learning reconstruction enabled a nearly twofold reduction in scan time for a knee MRI and was diagnostically equivalent with the conventional protocol. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Roemer in this issue.


Assuntos
Aprendizado Profundo , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Razão Sinal-Ruído
3.
Histochem Cell Biol ; 157(6): 685-696, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35318489

RESUMO

Electron tomography allows one to obtain 3D reconstructions visualizing a tissue's ultrastructure from a series of 2D projection images. An inherent problem with this imaging technique is that its projection images contain unwanted shifts, which must be corrected for to achieve reliable reconstructions. Commonly, the projection images are aligned with each other by means of fiducial markers prior to the reconstruction procedure. In this work, we propose a joint alignment and reconstruction algorithm that iteratively solves for both the unknown reconstruction and the unintentional shift and does not require any fiducial markers. We evaluate the approach first on synthetic phantom data where the focus is not only on the reconstruction quality but more importantly on the shift correction. Subsequently, we apply the algorithm to healthy C57BL/6J mice and then compare it with non-obese diabetic (NOD) mice, with the aim of visualizing the attack of immune cells on pancreatic beta cells within type 1 diabetic mice at a more profound level through 3D analysis. We empirically demonstrate that the proposed algorithm is able to compute the shift with a remaining error at only the sub-pixel level and yields high-quality reconstructions for the limited-angle inverse problem. By decreasing labour and material costs, the algorithm facilitates further research directed towards investigating the immune system's attacks in pancreata of NOD mice for numerous samples at different stages of type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Tomografia com Microscopia Eletrônica , Algoritmos , Animais , Comunicação Celular , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
4.
Acta Biomater ; 141: 300-314, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065266

RESUMO

An insight into changes of soft biological tissue ultrastructures under loading conditions is essential to understand their response to mechanical stimuli. Therefore, this study offers an approach to investigate the arrangement of collagen fibrils and proteoglycans (PGs), which are located within the mechanically loaded aortic wall. The human aortic samples were either fixed directly with glutaraldehyde in the load-free state or subjected to a planar biaxial extension test prior to fixation. The aortic ultrastructure was recorded using electron tomography. Collagen fibrils and PGs were segmented using convolutional neural networks, particularly the ESPNet model. The 3D ultrastructural reconstructions revealed a complex organization of collagen fibrils and PGs. In particular, we observed that not all PGs are attached to the collagen fibrils, but some fill the spaces between the fibrils with a clear distance to the collagen. The complex organization cannot be fully captured or can be severely misinterpreted in 2D. The approach developed opens up practical possibilities, including the quantification of the spatial relationship between collagen fibrils and PGs as a function of the mechanical load. Such quantification can also be used to compare tissues under different conditions, e.g., healthy and diseased, to improve or develop new material models. STATEMENT OF SIGNIFICANCE: The developed approach enables the 3D reconstruction of collagen fibrils and proteoglycans as they are embedded in the loaded human aortic wall. This methodological pipeline comprises the knowledge of arterial mechanics, imaging with transmission electron microscopy and electron tomography, segmentation of 3D image data sets with convolutional neural networks and finally offers a unique insight into the ultrastructural changes in the aortic tissue caused by mechanical stimuli.


Assuntos
Imageamento Tridimensional , Proteoglicanas , Colágeno/ultraestrutura , Matriz Extracelular , Humanos , Microscopia Eletrônica de Transmissão
5.
IEEE Trans Med Imaging ; 41(2): 279-291, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34506279

RESUMO

Recent deep learning approaches focus on improving quantitative scores of dedicated benchmarks, and therefore only reduce the observation-related (aleatoric) uncertainty. However, the model-immanent (epistemic) uncertainty is less frequently systematically analyzed. In this work, we introduce a Bayesian variational framework to quantify the epistemic uncertainty. To this end, we solve the linear inverse problem of undersampled MRI reconstruction in a variational setting. The associated energy functional is composed of a data fidelity term and the total deep variation (TDV) as a learned parametric regularizer. To estimate the epistemic uncertainty we draw the parameters of the TDV regularizer from a multivariate Gaussian distribution, whose mean and covariance matrix are learned in a stochastic optimal control problem. In several numerical experiments, we demonstrate that our approach yields competitive results for undersampled MRI reconstruction. Moreover, we can accurately quantify the pixelwise epistemic uncertainty, which can serve radiologists as an additional resource to visualize reconstruction reliability.


Assuntos
Imageamento por Ressonância Magnética , Teorema de Bayes , Reprodutibilidade dos Testes , Incerteza
6.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 9163-9180, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34727026

RESUMO

Various problems in computer vision and medical imaging can be cast as inverse problems. A frequent method for solving inverse problems is the variational approach, which amounts to minimizing an energy composed of a data fidelity term and a regularizer. Classically, handcrafted regularizers are used, which are commonly outperformed by state-of-the-art deep learning approaches. In this work, we combine the variational formulation of inverse problems with deep learning by introducing the data-driven general-purpose total deep variation regularizer. In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks. This combination allows for a rigorous mathematical analysis including an optimal control formulation of the training problem in a mean-field setting and a stability analysis with respect to the initial values and the parameters of the regularizer. In addition, we experimentally verify the robustness against adversarial attacks and numerically derive upper bounds for the generalization error. Finally, we achieve state-of-the-art results for several imaging tasks.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Diagnóstico por Imagem
7.
Int J Numer Method Biomed Eng ; 37(8): e3505, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170082

RESUMO

The identification of the initial ventricular activation sequence is a critical step for the correct personalization of patient-specific cardiac models. In healthy conditions, the Purkinje network is the main source of the electrical activation, but under pathological conditions the so-called earliest activation sites (EASs) are possibly sparser and more localized. Yet, their number, location and timing may not be easily inferred from remote recordings, such as the epicardial activation or the 12-lead electrocardiogram (ECG), due to the underlying complexity of the model. In this work, we introduce GEASI (Geodesic-based Earliest Activation Sites Identification) as a novel approach to simultaneously identify all EASs. To this end, we start from the anisotropic eikonal equation modeling cardiac electrical activation and exploit its Hamilton-Jacobi formulation to minimize a given objective function, for example, the quadratic mismatch to given activation measurements. This versatile approach can be extended to estimate the number of activation sites by means of the topological gradient, or fitting a given ECG. We conducted various experiments in 2D and 3D for in-silico models and an in-vivo intracardiac recording collected from a patient undergoing cardiac resynchronization therapy. The results demonstrate the clinical applicability of GEASI for potential future personalized models and clinical intervention.


Assuntos
Eletrocardiografia , Coração , Simulação por Computador , Ventrículos do Coração , Humanos
8.
Med Image Anal ; 71: 102080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975097

RESUMO

Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.


Assuntos
Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Simulação por Computador , Coração , Ventrículos do Coração , Humanos
9.
Europace ; 23(23 Suppl 1): i63-i70, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751078

RESUMO

AIMS: Electric conduction in the atria is direction-dependent, being faster in fibre direction, and possibly heterogeneous due to structural remodelling. Intracardiac recordings of atrial activation may convey such information, but only with high-quality data. The aim of this study was to apply a patient-specific approach to enable such assessment even when data are scarce, noisy, and incomplete. METHODS AND RESULTS: Contact intracardiac recordings in the left atrium from nine patients who underwent ablation therapy were collected before pulmonary veins isolation and retrospectively included in the study. The Personalized Inverse Eikonal Model from cardiac Electro-Anatomical Maps (PIEMAP), previously developed, has been used to reconstruct the conductivity tensor from sparse recordings of the activation. Regional fibre direction and conduction velocity were estimated from the fitted conductivity tensor and extensively cross-validated by clustered and sparse data removal. Electrical conductivity was successfully reconstructed in all patients. Cross-validation with respect to the measurements was excellent in seven patients (Pearson correlation r > 0.93) and modest in two patients (r = 0.62 and r = 0.74). Bland-Altman analysis showed a neglectable bias with respect to the measurements and the limit-of-agreement at -22.2 and 23.0 ms. Conduction velocity in the fibre direction was 82 ± 25 cm/s, whereas cross-fibre velocity was 46 ± 7 cm/s. Anisotropic ratio was 1.91±0.16. No significant inter-patient variability was observed. Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps correctly predicted activation times in late regions in all patients (r = 0.88) and was robust to a sparser dataset (r = 0.95). CONCLUSION: Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps offers a novel approach to extrapolate the activation in unmapped regions and to assess conduction properties of the atria. It could be seamlessly integrated into existing electro-anatomic mapping systems. Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps also enables personalization of cardiac electrophysiology models.


Assuntos
Fibrilação Atrial , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Átrios do Coração/cirurgia , Humanos , Veias Pulmonares/cirurgia , Estudos Retrospectivos
10.
J Math Imaging Vis ; 63(2): 309-327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33627956

RESUMO

This paper combines image metamorphosis with deep features. To this end, images are considered as maps into a high-dimensional feature space and a structure-sensitive, anisotropic flow regularization is incorporated in the metamorphosis model proposed by Miller and Younes (Int J Comput Vis 41(1):61-84, 2001) and Trouvé and Younes (Found Comput Math 5(2):173-198, 2005). For this model, a variational time discretization of the Riemannian path energy is presented and the existence of discrete geodesic paths minimizing this energy is demonstrated. Furthermore, convergence of discrete geodesic paths to geodesic paths in the time continuous model is investigated. The spatial discretization is based on a finite difference approximation in image space and a stable spline approximation in deformation space; the fully discrete model is optimized using the iPALM algorithm. Numerical experiments indicate that the incorporation of semantic deep features is superior to intensity-based approaches.

11.
Funct Imaging Model Heart ; 2021: 650-658, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35098259

RESUMO

Electroanatomical maps are a key tool in the diagnosis and treatment of atrial fibrillation. Current approaches focus on the activation times recorded. However, more information can be extracted from the available data. The fibers in cardiac tissue conduct the electrical wave faster, and their direction could be inferred from activation times. In this work, we employ a recently developed approach, called physics informed neural networks, to learn the fiber orientations from electroanatomical maps, taking into account the physics of the electrical wave propagation. In particular, we train the neural network to weakly satisfy the anisotropic eikonal equation and to predict the measured activation times. We use a local basis for the anisotropic conductivity tensor, which encodes the fiber orientation. The methodology is tested both in a synthetic example and for patient data. Our approach shows good agreement in both cases and it outperforms a state of the art method in the patient data. The results show a first step towards learning the fiber orientations from electroanatomical maps with physics-informed neural networks.

12.
J Comput Phys ; 4192020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32952215

RESUMO

A key mechanism controlling cardiac function is the electrical activation sequence of the heart's main pumping chambers termed the ventricles. As such, personalization of the ventricular activation sequences is of pivotal importance for the clinical utility of computational models of cardiac electrophysiology. However, a direct observation of the activation sequence throughout the ventricular volume is virtually impossible. In this study, we report on a novel method for identification of activation sequences from activation maps measured at the outer surface of the heart termed the epicardium. Conceptually, the method attempts to identify the key factors governing the ventricular activation sequence - the timing of earliest activation sites (EAS) and the velocity tensor field within the ventricular walls - from sparse and noisy activation maps sampled from the epicardial surface and fits an Eikonal model to the observations. Regularization methods are first investigated to overcome the severe ill-posedness of the inverse problem in a simplified 2D example. These methods are then employed in an anatomically accurate biventricular model with two realistic activation models of varying complexity - a simplified trifascicular model (3F) and a topologically realistic model of the His-Purkinje system (HPS). Using epicardial activation maps at full resolution, we first demonstrate that reconstructing the volumetric activation sequence is, in principle, feasible under the assumption of known location of EAS and later evaluate robustness of the method against noise and reduced spatial resolution of observations. Our results suggest that the FIMIN algorithm is able to robustly recover the full 3D activation sequence using epicardial activation maps at a spatial resolution achievable with current mapping systems and in the presence of noise. Comparing the accuracy achieved in the reconstructed activation maps with clinical data uncertainties suggests that the FIMIN method may be suitable for the patient- specific parameterization of activation models.

13.
J Math Imaging Vis ; 62(3): 396-416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300264

RESUMO

We investigate a well-known phenomenon of variational approaches in image processing, where typically the best image quality is achieved when the gradient flow process is stopped before converging to a stationary point. This paradox originates from a tradeoff between optimization and modeling errors of the underlying variational model and holds true even if deep learning methods are used to learn highly expressive regularizers from data. In this paper, we take advantage of this paradox and introduce an optimal stopping time into the gradient flow process, which in turn is learned from data by means of an optimal control approach. After a time discretization, we obtain variational networks, which can be interpreted as a particular type of recurrent neural networks. The learned variational networks achieve competitive results for image denoising and image deblurring on a standard benchmark data set. One of the key theoretical results is the development of first- and second-order conditions to verify optimal stopping time. A nonlinear spectral analysis of the gradient of the learned regularizer gives enlightening insights into the different regularization properties.

14.
IEEE Signal Process Mag ; 37(1): 128-140, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758487

RESUMO

Following the success of deep learning in a wide range of applications, neural network-based machine learning techniques have received interest as a means of accelerating magnetic resonance imaging (MRI). A number of ideas inspired by deep learning techniques from computer vision and image processing have been successfully applied to non-linear image reconstruction in the spirit of compressed sensing for both low dose computed tomography and accelerated MRI. The additional integration of multi-coil information to recover missing k-space lines in the MRI reconstruction process, is still studied less frequently, even though it is the de-facto standard for currently used accelerated MR acquisitions. This manuscript provides an overview of the recent machine learning approaches that have been proposed specifically for improving parallel imaging. A general background introduction to parallel MRI is given that is structured around the classical view of image space and k-space based methods. Both linear and non-linear methods are covered, followed by a discussion of recent efforts to further improve parallel imaging using machine learning, and specifically using artificial neural networks. Image-domain based techniques that introduce improved regularizers are covered as well as k-space based methods, where the focus is on better interpolation strategies using neural networks. Issues and open problems are discussed as well as recent efforts for producing open datasets and benchmarks for the community.

15.
Int J Comput Assist Radiol Surg ; 14(4): 587-599, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30779021

RESUMO

PURPOSE: Cancers are almost always diagnosed by morphologic features in tissue sections. In this context, machine learning tools provide new opportunities to describe tumor immune cell interactions within the tumor microenvironment and thus provide phenotypic information that might be predictive for the response to immunotherapy. METHODS: We develop a machine learning approach using variational networks for joint image denoising and classification of tissue sections for melanoma, which is an established model tumor for immuno-oncology research. The manual annotation of real training data would require substantial user interaction of experienced pathologists for each single training image, and the training of larger networks would rely on a very large number of such data sets with ground truth annotation. To overcome this bottleneck, we synthesize training data together with a proper tissue structure classification. To this end, a stochastic data generation process is used to mimic cell morphology, cell distribution and tissue architecture in the tumor microenvironment. Particular components of this tool are random placement and rotation of a large number of patches for presegmented cell nuclei, a stochastic fast marching approach to mimic the geometry of cells and texture generation based on a color covariance analysis of real data. Here, the generated training data reflect a large range of interaction patterns. RESULTS: In several applications to histological tissue sections, we analyze the efficiency and accuracy of the proposed approach. As a result, depending on the scenario considered, almost all cells and nuclei which ought to be detected are actually marked as classified and hardly any misclassifications occur. CONCLUSIONS: The proposed method allows for a computer-aided screening of histological tissue sections utilizing variational networks with a particular emphasis on tumor immune cell interactions and on the robust cell nuclei classification.


Assuntos
Algoritmos , Núcleo Celular/patologia , Aprendizado de Máquina , Melanoma/diagnóstico , Modelos Teóricos , Comunicação Celular , Humanos , Melanoma/classificação
16.
Magn Reson Med ; 81(1): 116-128, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29774597

RESUMO

PURPOSE: Although deep learning has shown great promise for MR image reconstruction, an open question regarding the success of this approach is the robustness in the case of deviations between training and test data. The goal of this study is to assess the influence of image contrast, SNR, and image content on the generalization of learned image reconstruction, and to demonstrate the potential for transfer learning. METHODS: Reconstructions were trained from undersampled data using data sets with varying SNR, sampling pattern, image contrast, and synthetic data generated from a public image database. The performance of the trained reconstructions was evaluated on 10 in vivo patient knee MRI acquisitions from 2 different pulse sequences that were not used during training. Transfer learning was evaluated by fine-tuning baseline trainings from synthetic data with a small subset of in vivo MR training data. RESULTS: Deviations in SNR between training and testing led to substantial decreases in reconstruction image quality, whereas image contrast was less relevant. Trainings from heterogeneous training data generalized well toward the test data with a range of acquisition parameters. Trainings from synthetic, non-MR image data showed residual aliasing artifacts, which could be removed by transfer learning-inspired fine-tuning. CONCLUSION: This study presents insights into the generalization ability of learned image reconstruction with respect to deviations in the acquisition settings between training and testing. It also provides an outlook for the potential of transfer learning to fine-tune trainings to a particular target application using only a small number of training cases.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Meios de Contraste/química , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Prótons , Razão Sinal-Ruído , Adulto Jovem
17.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389903

RESUMO

Geometric surface information such as depth maps and surface normals can be acquired by various methods such as stereo light fields, shape from shading and photometric stereo techniques. We compare several algorithms which deal with the combination of depth with surface normal information in order to reconstruct a refined depth map. The reasons for performance differences are examined from the perspective of alternative formulations of surface normals for depth reconstruction. We review and analyze methods in a systematic way. Based on our findings, we introduce a new generalized fusion method, which is formulated as a least squares problem and outperforms previous methods in the depth error domain by introducing a novel normal weighting that performs closer to the geodesic distance measure. Furthermore, a novel method is introduced based on Total Generalized Variation (TGV) which further outperforms previous approaches in terms of the geodesic normal distance error and maintains comparable quality in the depth error domain.

18.
Magn Reson Med ; 79(6): 3055-3071, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29115689

RESUMO

PURPOSE: To allow fast and high-quality reconstruction of clinical accelerated multi-coil MR data by learning a variational network that combines the mathematical structure of variational models with deep learning. THEORY AND METHODS: Generalized compressed sensing reconstruction formulated as a variational model is embedded in an unrolled gradient descent scheme. All parameters of this formulation, including the prior model defined by filter kernels and activation functions as well as the data term weights, are learned during an offline training procedure. The learned model can then be applied online to previously unseen data. RESULTS: The variational network approach is evaluated on a clinical knee imaging protocol for different acceleration factors and sampling patterns using retrospectively and prospectively undersampled data. The variational network reconstructions outperform standard reconstruction algorithms, verified by quantitative error measures and a clinical reader study for regular sampling and acceleration factor 4. CONCLUSION: Variational network reconstructions preserve the natural appearance of MR images as well as pathologies that were not included in the training data set. Due to its high computational performance, that is, reconstruction time of 193 ms on a single graphics card, and the omission of parameter tuning once the network is trained, this new approach to image reconstruction can easily be integrated into clinical workflow. Magn Reson Med 79:3055-3071, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Algoritmos , Simulação por Computador , Compressão de Dados , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
19.
Curr Neurol Neurosci Rep ; 17(5): 43, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28390033

RESUMO

PURPOSE OF REVIEW: Substantial research exists focusing on the various aspects and domains of early human development. However, there is a clear blind spot in early postnatal development when dealing with neurodevelopmental disorders, especially those that manifest themselves clinically only in late infancy or even in childhood. RECENT FINDINGS: This early developmental period may represent an important timeframe to study these disorders but has historically received far less research attention. We believe that only a comprehensive interdisciplinary approach will enable us to detect and delineate specific parameters for specific neurodevelopmental disorders at a very early age to improve early detection/diagnosis, enable prospective studies and eventually facilitate randomised trials of early intervention. In this article, we propose a dynamic framework for characterising neurofunctional biomarkers associated with specific disorders in the development of infants and children. We have named this automated detection 'Fingerprint Model', suggesting one possible approach to accurately and early identify neurodevelopmental disorders.


Assuntos
Biomarcadores , Diagnóstico Precoce , Transtornos do Neurodesenvolvimento/diagnóstico , Humanos
20.
PLoS One ; 12(2): e0170986, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28151950

RESUMO

The present study aimed to define differences between silent and oral reading with respect to spatial and temporal eye movement parameters. Eye movements of 22 German-speaking adolescents (14 females; mean age = 13;6 years;months) were recorded while reading an age-appropriate text silently and orally. Preschool cognitive abilities were assessed at the participants' age of 5;7 (years;months) using the Kaufman Assessment Battery for Children. The participants' reading speed and reading comprehension at the age of 13;6 (years;months) were determined using a standardized inventory to evaluate silent reading skills in German readers (Lesegeschwindigkeits- und -verständnistest für Klassen 6-12). The results show that (i) reading mode significantly influenced both spatial and temporal characteristics of eye movement patterns; (ii) articulation decreased the consistency of intraindividual reading performances with regard to a significant number of eye movement parameters; (iii) reading skills predicted the majority of eye movement parameters during silent reading, but influenced only a restricted number of eye movement parameters when reading orally; (iv) differences with respect to a subset of eye movement parameters increased with reading skills; (v) an overall preschool cognitive performance score predicted reading skills at the age of 13;6 (years;months), but not eye movement patterns during either silent or oral reading. However, we found a few significant correlations between preschool performances on subscales of sequential and simultaneous processing and eye movement parameters for both reading modes. Overall, the findings suggest that eye movement patterns depend on the reading mode. Preschool cognitive abilities were more closely related to eye movement patterns of oral than silent reading, while reading skills predicted eye movement patterns during silent reading, but less so during oral reading.


Assuntos
Movimentos Oculares/fisiologia , Leitura , Adolescente , Pré-Escolar , Cognição/fisiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...