Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38585202

RESUMO

Mitochondria and the endoplasmic reticulum (ER) utilise unique unfolded protein response (UPR) mechanisms to maintain cellular proteostasis. Heat shock proteins (HSPs) are UPR chaperones induced by specific stressors to promote protein folding. Previous research has successfully employed transgenic reporters in Caenorhabditis elegans to report HSP induction. However, transgenic reporters are overexpressed and only show promoter regulation and not post-transcriptional regulation. To examine endogenous HSP regulation, we attempted to generate and validate endogenous reporters for mitochondrial ( HSP-60 ) and ER ( HSP-4 ) chaperones. Using CRISPR/Cas9 technology, F2A-GFP-H2B coding DNA was inserted downstream of each HSP gene and stress induction assays conducted to validate these tools. Endogenous reporters were successfully generated for hsp-4 and hsp-60 . However, GFP induction could not be detected with these endogenous reporters upon stress induction, likely due to low level expression.

2.
Neural Regen Res ; 19(11): 2325-2326, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526257
3.
Cell Rep ; 42(12): 113582, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096055

RESUMO

Nervous system function relies on the establishment of complex gene expression programs that provide neuron-type-specific and core pan-neuronal features. These complementary regulatory paradigms are controlled by terminal selector and parallel-acting transcription factors (TFs), respectively. Here, we identify the nuclear factor Y (NF-Y) TF as a pervasive direct and indirect regulator of both neuron-type-specific and pan-neuronal gene expression. Mapping global NF-Y targets reveals direct binding to the cis-regulatory regions of pan-neuronal genes and terminal selector TFs. We show that NFYA-1 controls pan-neuronal gene expression directly through binding to CCAAT boxes in target gene promoters and indirectly by regulating the expression of terminal selector TFs. Further, we find that NFYA-1 regulation of neuronal gene expression is important for neuronal activity and motor function. Thus, our research sheds light on how global neuronal gene expression programs are buffered through direct and indirect regulatory mechanisms.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Neurônios/metabolismo , Expressão Gênica
4.
Nat Cell Biol ; 25(8): 1196-1207, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537365

RESUMO

In animals, maternal diet and environment can influence the health of offspring. Whether and how maternal dietary choice impacts the nervous system across multiple generations is not well understood. Here we show that feeding Caenorhabditis elegans with ursolic acid, a natural plant product, improves axon transport and reduces adult-onset axon fragility intergenerationally. Ursolic acid provides neuroprotection by enhancing maternal provisioning of sphingosine-1-phosphate, a bioactive sphingolipid. Intestine-to-oocyte sphingosine-1-phosphate transfer is required for intergenerational neuroprotection and is dependent on the RME-2 lipoprotein yolk receptor. Sphingosine-1-phosphate acts intergenerationally by upregulating the transcription of the acid ceramidase-1 (asah-1) gene in the intestine. Spatial regulation of sphingolipid metabolism is critical, as inappropriate asah-1 expression in neurons causes developmental axon outgrowth defects. Our results show that sphingolipid homeostasis impacts the development and intergenerational health of the nervous system. The ability of specific lipid metabolites to act as messengers between generations may have broad implications for dietary choice during reproduction.


Assuntos
Neuroproteção , Esfingolipídeos , Animais , Esfingolipídeos/metabolismo , Caenorhabditis elegans/genética , Intestinos , Ácido Ursólico
5.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454093

RESUMO

DMD-9 is a Caenorhabditis elegans Doublesex/MAB-3 Domain transcription factor (TF) of unknown function. Single-cell transcriptomics has revealed that dmd-9 is highly expressed in specific head sensory neurons, with lower levels detected in non-neuronal tissues (uterine cells and sperm). Here, we characterized endogenous dmd-9 expression and function in hermaphrodites and males to identify potential sexually dimorphic roles. In addition, we dissected the trans- and cis-regulatory mechanisms that control DMD-9 expression in neurons. Our results show that of the 22 neuronal cell fate reporters we assessed in DMD-9-expressing neurons, only the neuropeptide-encoding flp-19 gene is cell-autonomously regulated by DMD-9. Further, we did not identify defects in behaviors mediated by DMD-9 expressing neurons in dmd-9 mutants. We found that dmd-9 expression in neurons is regulated by 4 neuronal fate regulatory TFs: ETS-5, EGL-13, CHE-1, and TTX-1. In conclusion, our study characterized the DMD-9 expression pattern and regulatory logic for its control. The lack of detectable phenotypes in dmd-9 mutant animals suggests that other proteins compensate for its loss.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Masculino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a DNA/metabolismo
6.
J Neurosci ; 42(46): 8599-8607, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36302635

RESUMO

Neuropeptide release from dense-core vesicles in Caenorhabditis elegans is promoted by UNC-31, ortholog of the calcium-dependent activator protein for secretion (CAPS). Loss of UNC-31 causes multiple phenotypes in C. elegans including reduced motility, retention of late-stage eggs, and reduction in evoked synaptic release. However, the ability to analyze UNC-31 function over discrete timescales and in specific neurons is lacking. Here, we generated and validated a tool to enable UNC-31 expression and spatiotemporal functional analysis. We show that endogenously tagged UNC-31 is expressed in major ganglia and nerve cords from late embryonic stages through to adult. Using the auxin-inducible degradation system, we depleted UNC-31 postembryonically from the hermaphrodite nervous system and revealed defects in egg laying, locomotion, and vesicle release that were comparable to those in unc-31 null mutant animals. In addition, we found that depleting UNC-31 specifically from the BAG sensory neurons causes increased intestinal fat storage, highlighting the spatial sensitivity of this system. Together, this protein degradation tool may be used to facilitate studies of neuropeptide function at precise cellular and temporal scales.SIGNIFICANCE STATEMENT Animal behavior and physiology is controlled by neuropeptides that are released from specific neuronal sources. The ability to dissect discrete neuropeptide functions requires precise manipulation of neuropeptide release. We have developed and validated a tool that enables precise spatiotemporal regulation of neuropeptide release that will enable researchers to examine neuropeptide function at exceptional resolution.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Análise Espaço-Temporal , Mutação
7.
Biochem Soc Trans ; 50(5): 1517-1526, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36196981

RESUMO

Animals constantly encounter environmental and physiological stressors that threaten survival and fertility. Somatic stress responses and germ cell arrest/repair mechanisms are employed to withstand such challenges. The Caenorhabditis elegans germline combats stress by initiating mitotic germ cell quiescence to preserve genome integrity, and by removing meiotic germ cells to prevent inheritance of damaged DNA or to tolerate lack of germline nutrient supply. Here, we review examples of germline recovery from distinct stressors - acute starvation and defective splicing - where quiescent mitotic germ cells resume proliferation to repopulate a germ line following apoptotic removal of meiotic germ cells. These protective mechanisms reveal the plastic nature of germline stem cells.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Sobrevivência Celular , Células Germinativas/metabolismo , Divisão Celular , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
8.
Front Mol Neurosci ; 15: 974208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090252

RESUMO

Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.

9.
Sci Rep ; 12(1): 14003, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977998

RESUMO

Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and ß-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.


Assuntos
Proteínas de Caenorhabditis elegans , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
10.
PLoS Biol ; 20(5): e3001655, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35594303

RESUMO

Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. A key part of this network is insulin-like signaling, which is fundamental for surviving glucose stress. Here, we show that Caenorhabditis elegans fed excess dietary glucose reduce insulin-1 (INS-1) expression specifically in the BAG glutamatergic sensory neurons. We demonstrate that INS-1 expression in the BAG neurons is directly controlled by the transcription factor ETS-5, which is also down-regulated by glucose. We further find that INS-1 acts exclusively from the BAG neurons, and not other INS-1-expressing neurons, to systemically inhibit fat storage via the insulin-like receptor DAF-2. Together, these findings reveal an intertissue regulatory pathway where regulation of insulin expression in a specific neuron controls systemic metabolism in response to excess dietary glucose.


Assuntos
Proteínas de Caenorhabditis elegans , Insulina , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dieta , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
11.
iScience ; 25(2): 103791, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146399

RESUMO

Coordinated expression of cell adhesion and signaling molecules is crucial for brain development. Here, we report that the Caenorhabditis elegans transforming growth factor ß (TGF-ß) type I receptor SMA-6 (small-6) acts independently of its cognate TGF-ß type II receptor DAF-4 (dauer formation-defective-4) to control neuronal guidance. SMA-6 directs neuronal development from the hypodermis through interactions with three, orphan, TGF-ß ligands. Intracellular signaling downstream of SMA-6 limits expression of NLR-1, an essential Neurexin-like cell adhesion receptor, to enable neuronal guidance. Together, our data identify an atypical TGF-ß-mediated regulatory mechanism to ensure correct neuronal development.

12.
Cell Death Differ ; 29(4): 772-787, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34663906

RESUMO

Splicing introns from precursor-messenger RNA (pre-mRNA) transcripts is essential for translating functional proteins. Here, we report that the previously uncharacterized Caenorhabditis elegans protein MOG-7 acts as a pre-mRNA splicing factor. Depleting MOG-7 from the C. elegans germ line causes intron retention in most germline-expressed genes, impeding the germ cell cycle, and causing defects in nuclear morphology, germ cell identity and sterility. Despite the deleterious consequences caused by MOG-7 loss, the adult germ line can functionally recover to produce viable and fertile progeny when MOG-7 is restored. Germline recovery is dependent on a burst of apoptosis that likely clears defective germ cells, and viable gametes generated from the proliferation of germ cells in the progenitor zone. Together, these findings reveal that MOG-7 is essential for germ cell development, and that the germ line can functionally recover after a collapse in RNA splicing.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo
13.
Nat Commun ; 12(1): 6708, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795288

RESUMO

Communication between the soma and germline optimizes germ cell fate programs. Notch receptors are key determinants of germ cell fate but how somatic signals direct Notch-dependent germ cell behavior is undefined. Here we demonstrate that SDN-1 (syndecan-1), a somatic transmembrane proteoglycan, controls expression of the GLP-1 (germline proliferation-1) Notch receptor in the Caenorhabditis elegans germline. We find that SDN-1 control of a somatic TRP calcium channel governs calcium-dependent binding of an AP-2 transcription factor (APTF-2) to the glp-1 promoter. Hence, SDN-1 signaling promotes GLP-1 expression and mitotic germ cell fate. Together, these data reveal SDN-1 as a putative communication nexus between the germline and its somatic environment to control germ cell fate decisions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Diferenciação Celular/genética , Células Germinativas/metabolismo , Receptores Notch/genética , Sindecana-1/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proliferação de Células/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Camundongos , Microscopia Confocal , Interferência de RNA , Receptores Notch/metabolismo , Sindecana-1/metabolismo
14.
Front Neurosci ; 15: 745376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646119

RESUMO

Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.

15.
Elife ; 102021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34165430

RESUMO

The generation of the enormous diversity of neuronal cell types in a differentiating nervous system entails the activation of neuron type-specific gene batteries. To examine the regulatory logic that controls the expression of neuron type-specific gene batteries, we interrogate single cell expression profiles of all 118 neuron classes of the Caenorhabditis elegans nervous system for the presence of DNA binding motifs of 136 neuronally expressed C. elegans transcription factors. Using a phylogenetic footprinting pipeline, we identify cis-regulatory motif enrichments among neuron class-specific gene batteries and we identify cognate transcription factors for 117 of the 118 neuron classes. In addition to predicting novel regulators of neuronal identities, our nervous system-wide analysis at single cell resolution supports the hypothesis that many transcription factors directly co-regulate the cohort of effector genes that define a neuron type, thereby corroborating the concept of so-called terminal selectors of neuronal identity. Our analysis provides a blueprint for how individual components of an entire nervous system are genetically specified.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Simulação por Computador , Sistema Nervoso/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
16.
Cell Signal ; 84: 110006, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33857577

RESUMO

Cell-extracellular matrix interactions are crucial for the development of an organism from the earliest stages of embryogenesis. The main constituents of the extracellular matrix are collagens, laminins, proteoglycans and glycosaminoglycans that form a network of interactions. The extracellular matrix and its associated molecules provide developmental cues and structural support from the outside of cells during development. The complex nature of the extracellular matrix and its ability for continuous remodeling poses challenges when investigating extracellular matrix-based signaling during development. One way to address these challenges is to employ invertebrate models such as Caenorhabditis elegans, which are easy to genetically manipulate and have an invariant developmental program. C. elegans also expresses fewer extracellular matrix protein isoforms and exhibits reduced redundancy compared to mammalian models, thus providing a simpler platform for exploring development. This review summarizes our current understanding of how the extracellular matrix controls the development of neurons, muscles and the germline in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mamíferos/metabolismo , Proteoglicanas
17.
Small GTPases ; 12(1): 60-66, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042115

RESUMO

During development of the brain, neuronal circuits are formed through the projection of axons and dendrites in response to guidance signals. Rho GTPases (Rac1/RhoA/Cdc42) are major regulators of axo-dendritic outgrowth and guidance due to their role in controlling actin cytoskeletal dynamics, cell adhesion and motility. Functional redundancy of Rho GTPase-regulated pathways in neuronal development can mask the roles of specific GTPases. To examine potential Rho GTPase redundancy, we utilized a recently isolated hypomorphic mutation in a Caenorhabditis elegans Rac1 protein - CED-10(G30E) - which reduces the GTP binding and inhibits axon outgrowth of the PVQ interneurons. Here, we show that the CDC-42-specific guanine nucleotide exchange factor UIG-1 acts in parallel to CED-10/Rac1 to control PVQ axon outgrowth. UIG-1 performs this function in a cell-autonomous manner. Further, we found that transgenic expression of CDC-42 can compensate for aberrant CED-10(G30E)-regulated signalling during PVQ axon outgrowth. Together, our study reveals a previously unappreciated function for CDC-42 in PVQ axon outgrowth in C. elegans.


Assuntos
Caenorhabditis elegans , Animais
18.
MicroPubl Biol ; 20202020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274317
19.
BMC Genomics ; 21(1): 688, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008304

RESUMO

BACKGROUND: Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract in vertebrates. Many disorders of female reproduction can be attributed to anomalies of Müllerian duct development. However, the molecular genetics of Müllerian duct formation is poorly understood and most disorders of duct development have unknown etiology. In this study, we describe for the first time the transcriptional landscape of the embryonic Müllerian duct, using the chicken embryo as a model system. RNA sequencing was conducted at 1 day intervals during duct formation to identify developmentally-regulated genes, validated by in situ hybridization. RESULTS: This analysis detected hundreds of genes specifically up-regulated during duct morphogenesis. Gene ontology and pathway analysis revealed enrichment for developmental pathways associated with cell adhesion, cell migration and proliferation, ERK and WNT signaling, and, interestingly, axonal guidance. The latter included factors linked to neuronal cell migration or axonal outgrowth, such as Ephrin B2, netrin receptor, SLIT1 and class A semaphorins. A number of transcriptional modules were identified that centred around key hub genes specifying matrix-associated signaling factors; SPOCK1, HTRA3 and ADGRD1. Several novel regulators of the WNT and TFG-ß signaling pathway were identified in Müllerian ducts, including APCDD1 and DKK1, BMP3 and TGFBI. A number of novel transcription factors were also identified, including OSR1, FOXE1, PRICKLE1, TSHZ3 and SMARCA2. In addition, over 100 long non-coding RNAs (lncRNAs) were expressed during duct formation. CONCLUSIONS: This study provides a rich resource of new candidate genes for Müllerian duct development and its disorders. It also sheds light on the molecular pathways engaged during tubulogenesis, a fundamental process in embryonic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Ductos Paramesonéfricos/metabolismo , Transcriptoma , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Feminino , Ductos Paramesonéfricos/embriologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Development ; 147(20)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32994172

RESUMO

Brain development requires precise regulation of axon outgrowth, guidance and termination by multiple signaling and adhesion molecules. How the expression of these neurodevelopmental regulators is transcriptionally controlled is poorly understood. The Caenorhabditis elegans SMD motor neurons terminate axon outgrowth upon sexual maturity and partially retract their axons during early adulthood. Here we show that C-terminal binding protein 1 (CTBP-1), a transcriptional corepressor, is required for correct SMD axonal development. Loss of CTBP-1 causes multiple defects in SMD axon development: premature outgrowth, defective guidance, delayed termination and absence of retraction. CTBP-1 controls SMD axon guidance by repressing the expression of SAX-7, an L1 cell adhesion molecule (L1CAM). CTBP-1-regulated repression is crucial because deregulated SAX-7/L1CAM causes severely aberrant SMD axons. We found that axonal defects caused by deregulated SAX-7/L1CAM are dependent on a distinct L1CAM, called LAD-2, which itself plays a parallel role in SMD axon guidance. Our results reveal that harmonization of L1CAM expression controls the development and maturation of a single neuron.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Motores/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Crescimento Neuronal , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Crescimento Neuronal/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...