Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38712209

RESUMO

Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the dynamic social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue flying females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the dense swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited attraction to visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that mosquitoes modulate their flight responses to nearby conspecifics in a similar manner to tethered animals, allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues allows them to simultaneously track females while avoiding collisions.

2.
Parasit Vectors ; 12(1): 589, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842944

RESUMO

BACKGROUND: Mating swarm segregation in closely related insect species may contribute to reproductive isolation. Visual markers are used for swarm formation; however, it is unknown whether they play a key role in swarm location, species segregation and sex aggregation. METHODS: Using two sympatric closely related species of the Anopheles gambiae complex, An. coluzzii and An. gambiae (s.s.), we investigated in both laboratory and semi-field conditions (i) whether males of the two species use visual markers (black cloths) to locate their swarm; and (ii) whether the presence/absence and size of the marker may differentially affect swarm characteristics. We also investigated whether conspecific virgin females use these markers to join male swarm sites. RESULTS: We showed that males of the two species used visual markers but in different ways: An. coluzzii swarm right above the marker whereas An. gambiae (s.s.) locate their swarm at a constant distance of 76.4 ± 0.6 cm from a 20 × 20 cm marker in the laboratory setup and at 206 ± 6 cm from a 60 × 60 cm marker in the semi-field setup. Although increased marker size recruited more mosquitoes and consequently increased the swarm size in the two species, An. coluzzii swarms flew higher and were stretched both vertically and horizontally, while An. gambiae (s.s.) swarms were only stretched horizontally. Virgin females displayed a swarm-like behavior with similar characteristics to their conspecific males. CONCLUSIONS: Our results provided experimental evidence that both An. coluzzii and An. gambiae (s.s.) males use ground visual markers to form and locate their swarm at species-specific locations. Moreover, the marker size differentially affected swarm characteristics in the two species. Our results also showed that virgin females displayed a swarm-like behavior. However, these "swarms" could be due to the absence of males in our experimental conditions. Nevertheless, the fact that females displayed these "swarms" with the same characteristics as their respective males provided evidence that visual markers are used by the two sexes to join mating spots. Altogether, this suggests that visual markers and the way species and sexes use them could be key cues in species segregation, swarm location and recognition.


Assuntos
Anopheles/fisiologia , Sinais (Psicologia) , Comportamento Sexual Animal , Visão Ocular , Percepção Visual , Animais , Feminino , Masculino
3.
Parasit Vectors ; 11(1): 641, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558681

RESUMO

BACKGROUND: The sterile insect technique (SIT) aims at suppressing or decreasing insect pest populations by introducing sterile insects into wild populations. SIT requires the mass-production of insects and their sterilization through, for example, radiation. However, both mass-rearing and radiation can affect the life history traits of insects making them less competitive than their wild counterparts. In the malaria mosquito Anopheles arabiensis, some progress has been made to improve the mating competitiveness of mass-reared irradiated males. However, to date, no study has explored the relative effects of colonization and irradiation on important reproductive traits in this species. Such data may help to focus research efforts more precisely to improve current techniques. METHODS: Two strains of An. arabiensis originating from the same locality were used: one reared in the laboratory for five generations and the second collected as late larval instars in the field prior to experimentation. Pupae were irradiated with 95 Gy and some adult reproductive traits, including insemination rate, fecundity, oviposition behavior, fertility and male survivorship, were assessed in different mating combinations. RESULTS: Our study revealed the different effects of mosquito strain and irradiation on reproductive processes. The insemination rate was higher in field (67.3%) than in laboratory (54.9%) females and was negatively affected by both female and male irradiation (un-irradiated vs irradiated: 70.2 vs 51.3% in females; 67.7 vs 53.7% in males). Irradiated females did not produce eggs and egg prevalence was lower in the field strain (75.4%) than in the laboratory strain (83.9%). The hatching rate was higher in the field strain (88.7%) than in the laboratory strain (70.6%) as well as in un-irradiated mosquitoes (96.5%) than in irradiated ones (49%). Larval viability was higher in the field strain (96.2%) than in the laboratory strain (78.5%) and in un-irradiated mosquitoes (97.6%) than irradiated ones (52%). Finally, field males lived longer than laboratory males (25.1 vs 20.5 days, respectively). CONCLUSIONS: Our results revealed that both irradiation and colonization alter reproductive traits. However, different developmental stages are not equally affected. It is necessary to consider as many fitness traits as possible to evaluate the efficacy of the sterile insect technique.


Assuntos
Anopheles/fisiologia , Anopheles/efeitos da radiação , Controle de Mosquitos/métodos , Animais , Feminino , Masculino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/efeitos da radiação , Oviposição/efeitos da radiação , Pupa/fisiologia , Pupa/efeitos da radiação , Radiação , Reprodução/efeitos da radiação , Comportamento Sexual Animal/efeitos da radiação
4.
Malar J ; 17(1): 136, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609597

RESUMO

BACKGROUND: A novel strategy applying an organophosphate-based insecticide paint on doors and windows in combination with long-lasting insecticide-treated nets (LLINs) was tested for the control of pyrethroid-resistant malaria vectors in a village setting in Vallée du Kou, a rice-growing area west of Burkina Faso. METHODS: Insecticide Paint Inesfly 5A IGR™, comprised of two organophosphates and an insect growth regulator, was applied to doors and windows and tested in combination with pyrethroid-treated LLINs. The killing effect was monitored for 5 months by early morning collections of anophelines and other culicids. The residual efficacy was evaluated monthly by WHO bioassays using Anopheles gambiae 'Kisumu' and local populations of Anopheles coluzzii resistant to pyrethroids. The spatial mortality efficacy (SME) at distances of 1 m was also assessed against pyrethroid-susceptible and -resistant malaria vectors. The frequency of L1014F kdr and Ace-1 R G119S mutations was, respectively, reported throughout the study. The Insecticide Paint Inesfly 5A IGR had been tested in past studies yielding a long-term mortality rate of 80% over 12 months against An. coluzzii, the local pyrethroid-resistant malaria vector. The purpose of the present study is to test if treating smaller, targeted surfaces (e.g. doors and windows) was also efficient in killing malaria vectors. RESULTS: Treating windows and doors alone yielded a killing efficacy of 100% for 1 month against An. coluzzii resistant to pyrethroids, but efficacy reduced quickly afterwards. Likewise, WHO cone bioassays yielded mortalities of 80-100% for 2 months but declined to 90 and 40% 2 and 3 months after treatment, respectively. Mosquitoes exposed to insecticide paint-treated surfaces at distances of 1 m, yielded mortality rates of about 90-80% against local pyrethroids-resistant An. coluzzii during the first 2 months, but decreased to 30% afterwards. Anopheles coluzzii was reported to be exclusively the local malaria vector and resistant to pyrethroids with high L1014 kdr frequency. CONCLUSION: The combination of insecticide paint on doors and windows with LLINs yielded high mortality rates in the short term against wild pyrethroid-resistant malaria vector populations. A high SME was observed against laboratory strains of pyrethroid-resistant malaria vectors placed for 30 min at 1 m from the treated/control walls. The application of the insecticide paint on doors and windows led to high but short-lasting mortality rates. The strategy may be an option in a context where low cost, rapid responses need to be implemented in areas where malaria vectors are resistant to pyrethroids.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Controle de Mosquitos , Organofosfatos/farmacologia , Pintura , Animais , Burkina Faso , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Piretrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...