Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 8: 573230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195206

RESUMO

Differentiation of keratinocytes is critical for epidermal stratification and formation of a protective stratum corneum. It involves a series of complex processes leading through gradual changes in characteristics and functions of keratinocytes up to their programmed cell death via cornification. The stratum corneum is a relatively impermeable barrier, comprised of dead cell remnants (corneocytes) embedded in lipid matrix. Corneocyte membranes are comprised of specialized lipids linked to late differentiation proteins, contributing to the formation of a stiff and mechanically strengthened layer. To date, the assessment of the progression of keratinocyte differentiation is only possible through determination of specific differentiation markers, e.g., by using proteomics-based approaches. Unfortunately, this requires fixation or cell lysis, and currently there is no robust methodology available to study keratinocyte differentiation in living cells in real-time. Here, we explore new live-cell based approaches for screening differentiation advancement in keratinocytes, in a "calcium switch" model. We employ a polarity-sensitive dye, Laurdan, and Laurdan general polarization function (GP) as a reporter of the degree of membrane lateral packing order or condensation, as an adequate marker of differentiation. We show that the assay is straightforward and can be conducted either on a single cell level using confocal spectral imaging or on the ensemble level using a fluorescence plate reader. Such systematic quantification may become useful for understanding mechanisms of keratinocyte differentiation, such as the role of membrane in homogeneities in stiffness, and for future therapeutic development.

2.
Cell Death Dis ; 9(4): 412, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29545605

RESUMO

Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and ß-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.


Assuntos
Actinas/metabolismo , Epiderme/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Organogênese , Actinas/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Grânulos Citoplasmáticos/metabolismo , Epiderme/patologia , Proteínas Filagrinas , Proteínas de Choque Térmico/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinas/metabolismo , Chaperonas Moleculares/metabolismo , Organogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA