Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 384(1): 173-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310034

RESUMO

Acalabrutinib is a covalent Bruton tyrosine kinase (BTK) inhibitor approved for relapsed/refractory mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. A major metabolite of acalabrutinib (M27, ACP-5862) was observed in human plasma circulation. Subsequently, the metabolite was purified from an in vitro biosynthetic reaction and shown by nuclear magnetic resonance spectroscopy to be a pyrrolidine ring-opened ketone/amide. Synthesis confirmed its structure, and covalent inhibition of wild-type BTK was observed in a biochemical kinase assay. A twofold lower potency than acalabrutinib was observed but with similar high kinase selectivity. Like acalabrutinib, ACP-5862 was the most selective toward BTK relative to ibrutinib and zanubrutinib. Because of the potency, ACP-5862 covalent binding properties, and potential contribution to clinical efficacy of acalabrutinib, factors influencing acalabrutinib clearance and ACP-5862 formation and clearance were assessed. rCYP (recombinant cytochrome P450) reaction phenotyping indicated that CYP3A4 was responsible for ACP-5862 formation and metabolism. ACP-5862 formation Km (Michaelis constant) and Vmax were 2.78 µM and 4.13 pmol/pmol CYP3A/min, respectively. ACP-5862 intrinsic clearance was 23.6 µL/min per mg. Acalabrutinib weakly inhibited CYP2C8, CYP2C9, and CYP3A4, and ACP-5862 weakly inhibited CYP2C9 and CYP2C19; other cytochrome P450s, UGTs (uridine 5'-diphospho-glucuronosyltransferases), and aldehyde oxidase were not inhibited. Neither parent nor ACP-5862 strongly induced CYP1A2, CYP2B6, or CYP3A4 mRNA. Acalabrutinib and ACP-5862 were substrates of multidrug resistance protein 1 and breast cancer resistance protein but not OATP1B1 or OATP1B3. Our work indicates that ACP-5862 may contribute to clinical efficacy in acalabrutinib-treated patients and illustrates how proactive metabolite characterization allows timely assessment of drug-drug interactions and potential contributions of metabolites to pharmacological activity. SIGNIFICANCE STATEMENT: This work characterized the major metabolite of acalabrutinib, ACP-5862. Its contribution to the pharmacological activity of acalabrutinib was assessed based on covalent Bruton tyrosine kinase binding kinetics, kinase selectivity, and potency in cellular assays. The metabolic clearance and in vitro drug-drug interaction potential were also evaluated for both acalabrutinib and ACP-5862. The current data suggest that ACP-5862 may contribute to the clinical efficacy observed in acalabrutinib-treated patients and demonstrates the value of proactive metabolite identification and pharmacological characterization.


Assuntos
Citocromo P-450 CYP3A , Humanos , Adulto , Tirosina Quinase da Agamaglobulinemia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Citocromo P-450 CYP2C9 , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico
2.
Clin Pharmacol Drug Dev ; 11(5): 640-653, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35172043

RESUMO

This single 60-mg dose, 4-period crossover study assessed the effect of food and formulation change on navtemadlin (KRT-232) pharmacokinetics (PK) and macrophage inhibitory cytokine-1 (MIC-1) pharmacodynamics. Healthy subjects (N = 30) were randomized to 3 treatment sequences, A: new tablet, fasted (reference, dosed twice); B: new tablet, 30 minutes after a high-fat meal (test 1); C: old tablet, fasted (test 2). PK/pharmacodynamic parameters were measured over 0 to 96 hours. Adverse events were mild without any discontinuations. No serious adverse events or deaths occurred. In treatment A, navtemadlin mean (coefficient of variation) maximum concentration (Cmax ) was 525 (66) ng/mL, at median time to maximum concentration (tmax ) of 2 hours. Mean (coefficient of variation) area under the plasma concentration-time curve from time 0 to time t (AUC0-t ) was 3392 (63.3) ng • h/mL, and arithmetic mean terminal half-life was 18.6 hours. Acyl glucuronide metabolite (M1)/navtemadlin AUC0-t ratio was 0.2, and urine excretion of navtemadlin was negligible. After a meal (B vs A), navtemadlin tmax was delayed by 1 hour. Geometric least squares means ratios (90%CI) for navtemadlin Cmax and AUC0-t were 102.7% (87.4-120.6) and 81.4% (76.2-86.9), respectively. Old vs new tablet fasted formulations (C vs A) had geometric least squares means ratios (90%CI) of 78.4% (72.0-85.3) for Cmax and 85.9% (80.5-91.7) for AUC0-t . MIC-1 Cmax and AUC were comparable across groups; tmax was delayed relative to navtemadlin tmax by ≈8 hours. Navtemadlin AUC0-t and MIC-1 AUC0-t correlated significantly. In conclusion, navtemadlin can be administered safely with or without food; the new formulation does not affect navtemadlin PK. The 60-mg navtemadlin dose elicited a reproducible and robust MIC-1 response that correlated well with navtemadlin exposure, indicating that murine double minute 2 target engagement leads to p53 activation.


Assuntos
Interações Alimento-Droga , Proteínas Proto-Oncogênicas c-mdm2 , Humanos , Administração Oral , Estudos Cross-Over , Citocinas , Voluntários Saudáveis , Macrófagos , Comprimidos
3.
J Clin Pharmacol ; 62(6): 812-822, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34897701

RESUMO

Acalabrutinib received approval for the treatment of adult patients with mantle cell lymphoma who received at least 1 prior therapy and adult patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. This study investigated the impact of hepatic impairment (HI) on acalabrutinib pharmacokinetics (PK) and safety at a single 50-mg dose in fasted subjects. This study was divided into 2 parts: study 1, an open-label, parallel-group study in Child-Pugh class A or B subjects and healthy subjects; and study 2, an open-label, parallel-group study in Child-Pugh class C subjects and healthy subjects. Baseline characteristics and safety profiles were similar across groups. Acalabrutinib exposure (area under the plasma concentration-time curve) increased slightly (1.90- and 1.48-fold) in subjects with mild (Child-Pugh class A) and moderate (Child-Pugh class B) hepatic impairment compared with healthy subjects. In severe hepatic impairment (Child-Pugh class C), acalabrutinib exposure (area under the plasma concentration-time curve and maximum plasma concentration) increased ≈5.0- and 3.6-fold, respectively. Results were consistent across total and unbound exposures. Severe hepatic impairment did not impact total/unbound metabolite (ACP-5862) exposures; the metabolite-to-parent ratio decreased to 0.6 to 0.8 (vs 3.1-3.6 in healthy subjects). In summary, single oral dose of 50-mg acalabrutinib was safe and well tolerated in subjects with mild, moderate, and severe hepatic impairment and in healthy control subjects. In subjects with severe hepatic impairment, mean acalabrutinib exposure increased by up to 5-fold and should be avoided. Acalabrutinib does not require dose adjustment in patients with mild or moderate hepatic impairment.


Assuntos
Hepatopatias , Adulto , Área Sob a Curva , Benzamidas/efeitos adversos , Humanos , Hepatopatias/metabolismo , Pirazinas/efeitos adversos
4.
CPT Pharmacometrics Syst Pharmacol ; 8(7): 489-499, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31044521

RESUMO

Acalabrutinib, a selective, covalent Bruton tyrosine kinase inhibitor, is a CYP3A substrate and weak CYP3A/CYP2C8 inhibitor. A physiologically-based pharmacokinetic (PBPK) model was developed for acalabrutinib and its active metabolite ACP-5862 to predict potential drug-drug interactions (DDIs). The model indicated acalabrutinib would not perpetrate a CYP2C8 or CYP3A DDI with the sensitive CYP substrates rosiglitazone or midazolam, respectively. The model reasonably predicted clinically observed acalabrutinib DDI with the CYP3A perpetrators itraconazole (4.80-fold vs. 5.21-fold observed) and rifampicin (0.21-fold vs. 0.23-fold observed). An increase of two to threefold acalabrutinib area under the curve was predicted for coadministration with moderate CYP3A inhibitors. When both the parent drug and active metabolite (total active components) were considered, the magnitude of the CYP3A DDI was much less significant. PBPK dosing recommendations for DDIs should consider the magnitude of the parent drug excursion, relative to safe parent drug exposures, along with the excursion of total active components to best enable safe and adequate pharmacodynamic coverage.


Assuntos
Benzamidas/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Pirazinas/farmacocinética , Ensaios Clínicos Fase I como Assunto , Simulação por Computador , Interações Medicamentosas , Humanos , Modelos Biológicos
5.
Drug Metab Dispos ; 47(5): 504-515, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787099

RESUMO

Emixustat potently inhibits the visual cycle isomerase retinal pigment epithelium protein 65 (RPE65) to reduce the accumulation of toxic bisretinoid by-products that lead to various retinopathies. Orally administered emixustat is cleared rapidly from the plasma, with little excreted unchanged. The hydroxypropylamine moiety that is critical in emixustat's inhibition of RPE65 is oxidatively deaminated to three major carboxylic acid metabolites that appear rapidly in plasma. These metabolites greatly exceed the plasma concentrations of emixustat and demonstrate formation-rate-limited metabolite kinetics. This study investigated in vitro deamination of emixustat in human vascular membrane fractions, plasma, and recombinant human vascular adhesion protein-1 (VAP-1), demonstrating single-enzyme kinetics for the formation of a stable aldehyde intermediate (ACU-5201) in all in vitro systems. The in vitro systems used herein established sequential formation of the major metabolites with addition of assay components for aldehyde dehydrogenase and cytochrome P450. Reaction phenotyping experiments using selective chemical inhibitors and recombinant enzymes of monoamine oxidase, VAP-1, and lysyl oxidase showed that only VAP-1 deaminated emixustat. In individually derived human vascular membranes from umbilical cord and aorta, rates of emixustat deamination were highly correlated to VAP-1 marker substrate activity (benzylamine) and VAP-1 levels measured by enzyme-linked immunosorbent assay. In donor-matched plasma samples, soluble VAP-1 activity and levels were lower than in aorta membranes. A variety of potential comedications did not strongly inhibit emixustat deamination in vitro.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Moléculas de Adesão Celular/metabolismo , Desaminação/fisiologia , Semicarbazidas/metabolismo , Idoso , Benzilaminas/metabolismo , Feminino , Humanos , Masculino , Monoaminoxidase/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Éteres Fenílicos/metabolismo , Propanolaminas/metabolismo
6.
Drug Metab Dispos ; 47(2): 145-154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30442651

RESUMO

Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a ß-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Administração Oral , Adulto , Animais , Antineoplásicos/análise , Antineoplásicos/metabolismo , Benzamidas/análise , Benzamidas/metabolismo , Disponibilidade Biológica , Cães , Fezes/química , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Hidrólise , Absorção Intestinal , Linfoma de Célula do Manto/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Oxirredução , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/metabolismo , Pirazinas/análise , Pirazinas/metabolismo , Ratos , Ratos Sprague-Dawley , Urina/química , Adulto Jovem
7.
Bioanalysis ; 10(22): 1803-1817, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325202

RESUMO

Aim: A sensitive method to quantify emixustat and its rapidly formed three major deaminated metabolites in human plasma was necessary to determine exposure in clinical trials. Methods: An LC-MS/MS method was validated for accuracy and precision, linearity, carry over, selectivity, recovery, matrix effects, hematocrit effects and stability. Results: A quantitative procedure for the determination of emixustat, ACU-5116, ACU-5124 and ACU-5149 in human plasma over the concentration range of 0.0500/1.00/1.00/1.00-10.0/1000/1000/1000 ng/ml, was successfully validated and has been used to successfully analyze samples in three clinical trials. Incurred sample reanalysis was performed for all four analytes in each study with >92% of the repeat results and original results within 20% of the mean of the two values.

8.
Bioanalysis ; 7(16): 2071-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26327186

RESUMO

BACKGROUND: A method to quantify emixustat (an investigational drug agent) in human blood collected using volumetric absorptive microsampling (VAMS) could be more practical for sample collection at sites with limited facilities for processing and storage of plasma. METHODS: A LC-MS/MS method was developed and evaluated for accuracy and precision, linearity, carryover, selectivity, recovery, matrix effects, hematocrit effects and stability. RESULTS: Core validation parameters met acceptance criteria within the normal ranges of hematocrit levels for adults (30-55%). Stability of emixustat in blood collected with and without anticoagulant (NaF/KOx) on the VAMS device at ambient, refrigerated and frozen conditions was established. CONCLUSION: The method has been validated and is suitable for the bioanalysis of emixustat in human blood collected by VAMS.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Cromatografia Líquida/métodos , Éteres Fenílicos/sangue , Propanolaminas/sangue , Espectrometria de Massas em Tandem/métodos , Anticoagulantes/química , Calibragem , Teste em Amostras de Sangue Seco/métodos , Estabilidade de Medicamentos , Congelamento , Hematócrito , Humanos , Masculino , Reprodutibilidade dos Testes , Fluoreto de Sódio/química , Temperatura
9.
Bioorg Med Chem Lett ; 22(7): 2536-43, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22401863

RESUMO

Lipid A is an essential component of the Gram negative outer membrane, which protects the bacterium from attack of many antibiotics. The Lipid A biosynthesis pathway is essential for Gram negative bacterial growth and is unique to these bacteria. The first committed step in Lipid A biosynthesis is catalysis by LpxC, a zinc dependent deacetylase. We show the design of an LpxC inhibitor utilizing a robust model which directed efficient design of picomolar inhibitors. Analysis of physiochemical properties drove design to focus on an optimal lipophilicity profile. Further structure based design took advantage of a conserved water network over the active site, and with the optimal lipophilicity profile, led to an improved LpxC inhibitor with in vivo activity against wild type Pseudomonas aeruginosa.


Assuntos
Amidoidrolases/química , Antibacterianos/síntese química , Inibidores Enzimáticos/síntese química , Ácidos Hidroxâmicos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Domínio Catalítico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ácidos Hidroxâmicos/farmacologia , Lipídeo A/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Relação Estrutura-Atividade , Água/química
10.
Drug Metab Dispos ; 31(7): 878-87, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12814964

RESUMO

Incubations with human liver and gut microsomes revealed that the antibiotic, clindamycin, is primarily oxidized to form clindamycin sulfoxide. In this report, evidence is presented that the S-oxidation of clindamycin is primarily mediated by CYP3A. This conclusion is based upon several lines of in vitro evidence, including the following. 1) Incubations with clindamycin in hepatic microsomes from a panel of human donors showed that clindamycin sulfoxide formation correlated with CYP3A-catalyzed testosterone 6beta-hydroxylase activity; 2) coincubation with ketaconazole, a CYP3A4-specific inhibitor, markedly inhibited clindamycin S-oxidase activity; and 3) when clindamycin was incubated across a battery of recombinant heterologously expressed human cytochrome P450 (P450) enzymes, CYP3A4 possessed the highest clindamycin S-oxidase activity. A potential role for flavin-containing monooxygenases (FMOs) in clindamycin S-oxidation in human liver was also evaluated. Formation of clindamycin sulfoxide in human liver microsomes was unaffected either by heat pretreatment or by chemical inhibition (e.g., methimazole). Furthermore, incubations with recombinant FMO isoforms revealed no detectable activity toward the formation of clindamycin sulfoxide. Beyond identifying the drug-metabolizing enzyme responsible for clindamycin S-oxidation, the ability of clindamycin to inhibit six human P450 enzymes was also evaluated. Of the P450 enzymes examined, only the activity of CYP3A4 was inhibited (approximately 26%) by coincubation with clindamycin (100 microM). Thus, it is concluded that CYP3A4 appears to account for the largest proportion of the observed P450 catalytic clindamycin S-oxidase activity in vitro, and this activity may be extrapolated to the in vivo condition.


Assuntos
Clindamicina/metabolismo , Intestinos/enzimologia , Microssomos Hepáticos/enzimologia , Microssomos/enzimologia , Clindamicina/antagonistas & inibidores , Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/fisiologia , Inibidores Enzimáticos , Humanos , Microssomos Hepáticos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases/farmacologia , Oxigenases/fisiologia , Proteínas Recombinantes/metabolismo , Estatística como Assunto , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...