Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38711225

RESUMO

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.

3.
NPJ Genom Med ; 9(1): 27, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582909

RESUMO

Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.

5.
Epilepsia ; 65(5): 1428-1438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470175

RESUMO

OBJECTIVE: To delineate the comprehensive phenotypic spectrum of SYNGAP1-related disorder in a large patient cohort aggregated through a digital registry. METHODS: We obtained de-identified patient data from an online registry. Data were extracted from uploaded medical records. We reclassified all SYNGAP1 variants using American College of Medical Genetics criteria and included patients with pathogenic/likely pathogenic (P/LP) single nucleotide variants or microdeletions incorporating SYNGAP1. We analyzed neurodevelopmental phenotypes, including epilepsy, intellectual disability (ID), autism spectrum disorder (ASD), behavioral disorders, and gait dysfunction for all patients with respect to variant type and location within the SynGAP1 protein. RESULTS: We identified 147 patients (50% male, median age 8 years) with P/LP SYNGAP1 variants from 151 individuals with data available through the database. One hundred nine were truncating variants and 22 were missense. All patients were diagnosed with global developmental delay (GDD) and/or ID, and 123 patients (84%) were diagnosed with epilepsy. Of those with epilepsy, 73% of patients had GDD diagnosed before epilepsy was diagnosed. Other prominent features included autistic traits (n = 100, 68%), behavioral problems (n = 100, 68%), sleep problems (n = 90, 61%), anxiety (n = 35, 24%), ataxia or abnormal gait (n = 69, 47%), sensory problems (n = 32, 22%), and feeding difficulties (n = 69, 47%). Behavioral problems were more likely in those patients diagnosed with anxiety (odds ratio [OR] 3.6, p = .014) and sleep problems (OR 2.41, p = .015) but not necessarily those with autistic traits. Patients with variants in exons 1-4 were more likely to have the ability to speak in phrases vs those with variants in exons 5-19, and epilepsy occurred less frequently in patients with variants in the SH3 binding motif. SIGNIFICANCE: We demonstrate that the data obtained from a digital registry recapitulate earlier but smaller studies of SYNGAP1-related disorder and add additional genotype-phenotype relationships, validating the use of the digital registry. Access to data through digital registries broadens the possibilities for efficient data collection in rare diseases.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Fenótipo , Proteínas Ativadoras de ras GTPase , Humanos , Masculino , Feminino , Criança , Epilepsia/genética , Proteínas Ativadoras de ras GTPase/genética , Pré-Escolar , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/epidemiologia , Sistema de Registros , Deficiência Intelectual/genética , Deficiência Intelectual/epidemiologia , Adulto , Adulto Jovem , Deficiências do Desenvolvimento/genética , Lactente , Estudos de Coortes , Transtorno Autístico/genética
6.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370728

RESUMO

Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2200 candidate epilepsy-associated genes, of which 81 were determined suitable for the generation of loss-of-function zebrafish models via CRISPR/Cas9 gene editing. Of those 81 crispants, 48 were successfully established as stable mutant lines and assessed for seizure-like swim patterns in a primary F2 screen. Evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, wnt8b) of the 48 mutant lines assessed. Further characterization of those 5 lines provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Furthermore, RNAseq revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.

7.
Am J Hum Genet ; 111(1): 96-118, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
8.
Neurology ; 102(3): e208119, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38175993

RESUMO

Many physicians and researchers are familiar with the tragic phenomenon known as sudden infant death syndrome (SIDS), the leading cause of postneonatal mortality in high-resource countries. A less familiar category of unexplained deaths is the problem of sudden unexplained death in childhood (SUDC), a more rare and unusual presentation of sudden death in children who are no longer infants and whose reasons for death defy explanation. A substantial body of research in SUDC now supports the possibility of an overlap with epilepsy and associated sudden death in that context (SUDEP). Stemming from the first contemporary reports of SUDC, we have learned that a disproportionate number of these children have personal and/or family histories of febrile seizures,1 in many cases, inherited in an autosomal dominant manner.2 Their febrile seizures can be associated with abnormalities in their temporal lobes,3,4 including bilamination of the dentate gyrus and other findings conventionally associated with temporal lobe epilepsy, implicating potential epilepsy-related mechanisms.5 Further evaluation of this emerging epilepsy-related phenotype has led to the identification of genetic variants in SCN1A and other epilepsy-associated genes,6,7 moving SUDC away from being considered an unexplained phenomenon to one where the working hypothesis includes a role for genetic predisposition and epilepsy-like mechanisms in the deaths, even without an established history of epilepsy. Nonetheless, because the terminal events of these seemingly healthy children are unexpected and unobserved, the clinical manifestations of whatever underlying vulnerabilities exist-generally discovered posthumously-remain a matter of speculation.


Assuntos
Epilepsia , Convulsões Febris , Morte Súbita Inesperada na Epilepsia , Criança , Humanos , Lactente , Morte Súbita/etiologia , Epilepsia/genética , Epilepsia/complicações , Convulsões Febris/genética , Lobo Temporal
9.
Ann Clin Transl Neurol ; 11(2): 251-262, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168508

RESUMO

OBJECTIVE: Evaluation of the clinical utility of a genetic diagnosis in CP remains limited. We aimed to characterize the clinical utility of a genetic diagnosis by exome sequencing (ES) in patients with CP and related motor disorders. METHODS: We enrolled participants with CP and "CP masquerading" conditions in an institutional ES initiative. In those with genetic diagnoses who had clinical visits to discuss results, we retrospectively reviewed medical charts, evaluating recommendations based on the genetic diagnosis pertaining to medication intervention, surveillance initiation, variant-specific testing, and patient education. RESULTS: We included 30 individuals with a molecular diagnosis and clinical follow-up. Nearly all (28 out of 30) had clinical impact resulting from the genetic diagnosis. Medication interventions included recommendation of mitochondrial multivitamin supplementation (6.67%, n = 2), ketogenic diet (3.33%, n = 1), and fasting avoidance (3.33%, n = 1). Surveillance-related actions included recommendations for investigating systemic complications (40%, n = 12); referral to new specialists to screen for systemic manifestations (33%, n = 10); continued follow-up with established specialists to focus on specific manifestations (16.67%, n = 5); referral to clinical genetics (16.67%, n = 5) to oversee surveillance recommendations. Variant-specific actions included carrier testing (10%, n = 3) and testing of potentially affected relatives (3.33%, n = 1). Patient education-specific actions included referral to experts in the genetic disorder (30%, n = 9); and counseling about possible changes in prognosis, including recognition of disease progression and early mortality (36.67%, n = 11). INTERPRETATION: This study highlights the clinical utility of a genetic diagnosis for CP and "CP masquerading" conditions, evident by medication interventions, surveillance impact, family member testing, and patient education, including possible prognostic changes.


Assuntos
Paralisia Cerebral , Dieta Cetogênica , Transtornos Motores , Humanos , Estudos Retrospectivos , Cognição
10.
Dev Med Child Neurol ; 66(4): 456-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37771170

RESUMO

AIM: To differentiate phenotypic features of individuals with CDKL5 deficiency disorder (CDD) from those of individuals with other infantile-onset epilepsies. METHOD: We performed a retrospective cohort study and ascertained individuals with CDD and comparison individuals with infantile-onset epilepsy who had epilepsy gene panel testing. We reviewed records, updated variant classifications, and compared phenotypic features. Wilcoxon rank-sum tests and χ2 or Fisher's exact tests were performed for between-cohort comparisons. RESULTS: We identified 137 individuals with CDD (110 females, 80.3%; median age at last follow-up 3 year 11 months) and 313 individuals with infantile-onset epilepsies (156 females, 49.8%; median age at last follow-up 5 years 2 months; 35% with genetic diagnosis). Features reported significantly more frequently in the CDD group than in the comparison cohort included developmental and epileptic encephalopathy (81% vs 66%), treatment-resistant epilepsy (95% vs 71%), sequential seizures (46% vs 6%), epileptic spasms (66% vs 42%, with hypsarrhythmia in 30% vs 48%), regression (52% vs 29%), evolution to Lennox-Gastaut syndrome (23% vs 5%), diffuse hypotonia (72% vs 36%), stereotypies (69% vs 11%), paroxysmal movement disorders (29% vs 17%), cerebral visual impairment (94% vs 28%), and failure to thrive (38% vs 22%). INTERPRETATION: CDD, compared with other suspected or confirmed genetic epilepsies presenting in the first year of life, is more often characterized by a combination of treatment-resistant epilepsy, developmental and epileptic encephalopathy, sequential seizures, spasms without hypsarrhythmia, diffuse hypotonia, paroxysmal movement disorders, cerebral visual impairment, and failure to thrive. Defining core phenotypic characteristics will improve precision diagnosis and treatment.


Assuntos
Encefalopatias , Epilepsia , Síndromes Epilépticas , Transtornos dos Movimentos , Espasmos Infantis , Estado Epiléptico , Feminino , Humanos , Masculino , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Insuficiência de Crescimento , Hipotonia Muscular/genética , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Convulsões , Espasmo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Transtornos da Visão
11.
Neurol Genet ; 10(1): e200117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149038

RESUMO

Objectives: Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection. Methods: We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes. Samples were mapped based on an anatomic relationship with the presumed seizure onset zone (SOZ). We performed deep panel sequencing of amplified and unamplified DNA to identify pathogenic variants with subsequent orthogonal validation. Results: We detect a pathogenic somatic PIK3CA variant, c.1624G>A (p.E542K), in the brain tissue samples, with VAF inversely correlated with distance from the SOZ. In addition, we identify this variant in amplified electrode-derived samples, albeit with lower VAFs. Discussion: We demonstrate regional mosaicism across epileptogenic tissue, suggesting a correlation between variant burden and SOZ. We also validate a pathogenic variant from individual amplified sEEG electrode-derived brain specimens, although further optimization of techniques is required.

12.
Epilepsy Behav ; 149: 109517, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956604

RESUMO

PCDH19 is a common epilepsy gene causing medication resistant epilepsy with fever-related seizures. Traditionally, patients with PCDH19-related epilepsy have not been considered surgical candidates. This retrospective review evaluated three patients with pathogenic variants in PCDH19 who presented with seizures in childhood, had one seizure semiology, became medication resistant, and had concordant imaging, seizure semiology and electrographic findings. All three patients ultimately underwent temporal lobectomy, resulting in seizure freedom. These findings suggest epilepsy surgery can be an effective treatment option for select patients with PCDH19-related epilepsy and a single seizure semiology.


Assuntos
Epilepsia , Convulsões Febris , Humanos , Caderinas/genética , Protocaderinas , Epilepsia/genética , Epilepsia/cirurgia , Convulsões/genética , Estudos Retrospectivos
13.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921875

RESUMO

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Transmissão Sináptica/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
14.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872450

RESUMO

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Assuntos
Epilepsias Parciais , Mosaicismo , Humanos , Mucosa Bucal , Mutação , Encéfalo , Epilepsias Parciais/genética
15.
Lancet Neurol ; 22(9): 812-825, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596007

RESUMO

BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.


Assuntos
Epilepsia , Convulsões Febris , Masculino , Feminino , Recém-Nascido , Humanos , Criança , Projetos Piloto , Estudos de Coortes , Estudos de Viabilidade , Epilepsia/diagnóstico , Epilepsia/genética , Ontário
16.
Ther Adv Rare Dis ; 4: 26330040231181406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621556

RESUMO

Background: Due to racial, cultural, and linguistic marginalization, some populations experience disproportionate barriers to genetic testing in both clinical and research settings. It is difficult to track such disparities due to non-inclusive self-reported race and ethnicity categories within the electronic health record (EHR). Inclusion and access for all populations is critical to achieve health equity and to capture the full spectrum of rare genetic disease. Objective: We aimed to create revised race and ethnicity categories. Additionally, we identified racial and ethnic under-representation amongst three cohorts: (1) the general Boston Children's Hospital patient population (general BCH), (2) the BCH patient population that underwent clinical genomic testing (clinical sequencing), and (3) Children's Rare Disease Cohort (CRDC) research initiative participants. Design and Methods: Race and ethnicity data were collected from the EHRs of the general BCH, clinical sequencing, and CRDC cohorts. We constructed a single comprehensive set of race and ethnicity categories. EHR-based race and ethnicity variables were mapped within each cohort to the revised categories. Then, the numbers of patients within each revised race and ethnicity category were compared across cohorts. Results: There was a significantly lower percentage of Black or African American/African, non-Hispanic/non-Latine individuals in the CRDC cohort compared with the general BCH cohort, but there was no statistically significant difference between the CRDC and the clinical sequencing cohorts. There was a significantly lower percentage of multi-racial, Hispanic/Latine individuals in the CRDC cohort than the clinical sequencing cohort. White, non-Hispanic/non-Latine individuals were over-represented in the CRDC compared to the two other groups. Conclusion: We highlight underrepresentation of certain racial and ethnic populations in sequencing cohorts compared to the general hospital population. We propose a range of measures to address these disparities, to strive for equitable future precision medicine-based clinical care and for the benefit of the whole rare disease community.


Racial and ethnic representation amongst general clinics, clinics that provide genetic testing, and genomic-based research at Boston Children's Hospital Background: Individuals who identify as belonging to a race or ethnicity that has been historically excluded from mainstream cultural, political, and economic activities ('historically marginalized') experience barriers to clinical care. These barriers are further complicated for families touched by rare genetic conditions. Obstacles can present as accessibility issues (transportation, financial, linguistic), low-quality medical care, or inadequate inclusion in research. It is important to have representation within rare disease research so that the full scope of these conditions is understood, leading to better patient care for all, and for health equity. Objective: We aimed to (1) to create new and inclusive race and ethnicity categories for the electronic health record (EHR) and (2) identify differences in racial and ethnic representation amongst patients generally seen at Boston Children's Hospital (general BCH), those who received genetic testing in a clinic at Boston Children's Hospital (clinical sequencing), and participants who enrolled in the CRDC research project at Boston Children's Hospital (CRDC). Design and Methods: We combined race and ethnicity categories to make more inclusive options than existing EHR categories. Differences in race and ethnicity representation were observed when looking at the three different patient groups (general BCH, clinical sequencing, and CRDC). Results: We observed a lower percentage of individuals who self-identify as Black or African American/African, non-Hispanic/non-Latine in the genetic testing groups (both research and clinical) than in the general BCH group. Individuals who self-identify as multi-racial, Hispanic/Latine are also under-represented in the CRDC research compared to the two other groups. The highest population percentage seen in all groups was that of patients who identify as White, non-Hispanic/non-Latine. This group was over-represented in the research CRDC group compared to the two others. Conclusion: Our study found that patients who are historically marginalized are underrepresented in clinical genetic testing and genomic research studies compared to their White counterparts. In order to benefit all patients with rare genetic conditions, these differences must be addressed by improving access to specialty physicians/researchers and incorporating inclusive language in the EHR, clinics, and research protocols.

17.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486637

RESUMO

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Assuntos
Polimicrogiria , Humanos , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Sequenciamento do Exoma , Estudos Retrospectivos , Mutação de Sentido Incorreto , Irmãos , Proteínas do Tecido Nervoso/genética , Conexinas/genética
18.
JAMA Netw Open ; 6(7): e2324380, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37471090

RESUMO

Importance: Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective: To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants: This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures: Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures: Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results: A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance: These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.


Assuntos
Epilepsia , Deficiência Intelectual , Masculino , Feminino , Humanos , Estudos de Coortes , Sequenciamento do Exoma , Deficiência Intelectual/epidemiologia , Epilepsia/diagnóstico , Epilepsia/genética , Convulsões
19.
Front Med (Lausanne) ; 10: 1166188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332751

RESUMO

A definitive, authoritative approach to evaluate the causes of unexpected, and ultimately unexplained, pediatric deaths remains elusive, relegating final conclusions to diagnoses of exclusion in the vast majority of cases. Research into unexplained pediatric deaths has focused primarily on sudden infant deaths (under 1 year of age) and led to the identification of several potential, albeit incompletely understood, contributory factors: nonspecific pathology findings, associations with sleep position and environment that may not be uniformly relevant, and the elucidation of a role for serotonin that is practically difficult to estimate in any individual case. Any assessment of progress in this field must also acknowledge the failure of current approaches to substantially decrease mortality rates in decades. Furthermore, potential commonalities with pediatric deaths across a broader age spectrum have not been widely considered. Recent epilepsy-related observations and genetic findings, identified post-mortem in both infants and children who died suddenly and unexpectedly, suggest a role for more intense and specific phenotyping efforts as well as an expanded role for genetic and genomic evaluation. We therefore present a new approach to reframe the phenotype in sudden unexplained deaths in the pediatric age range, collapsing many distinctions based on arbitrary factors (such as age) that have previously guided research in this area, and discuss its implications for the future of postmortem investigation.

20.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126322

RESUMO

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Epilepsia do Lobo Temporal/cirurgia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estudos Retrospectivos , Hipocampo/patologia , Epilepsia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...