Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 8(1): 202, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465774

RESUMO

Pedigree information is of fundamental importance in breeding programs and related genetics efforts. However, many individuals have unknown pedigrees. While methods to identify and confirm direct parent-offspring relationships are routine, those for other types of close relationships have yet to be effectively and widely implemented with plants, due to complications such as asexual propagation and extensive inbreeding. The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes (referred to in this study as "summed potential lengths of shared haplotypes", SPLoSH). A custom Python script, HapShared, was developed to generate SPLoSH data in apple and sweet cherry. HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops. These distributions were then used to estimate previously unknown relationships. Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data. For cherry, a full-sib relationship was deduced for 'Emperor Francis, and 'Schmidt', a half-sib relationship for 'Van' and 'Windsor', and the paternal grandparents of 'Stella' were confirmed. For apple, 29 cultivars were found to share an unknown parent, the pedigree of the unknown parent of 'Cox's Pomona' was reconstructed, and 'Fameuse' was deduced to be a likely grandparent of 'McIntosh'. Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets, integrated genetic maps, and previously identified pedigree relationships. Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.

2.
G3 (Bethesda) ; 9(10): 3423-3438, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31439717

RESUMO

Barley (Hordeum vulgare ssp. vulgare) is cultivated from the equator to the Arctic Circle. The wild progenitor species, Hordeum vulgare ssp. spontaneum, occupies a relatively narrow latitudinal range (∼30 - 40° N) primarily at low elevation (< 1,500 m). Adaptation to the range of cultivation has occurred over ∼8,000 years. The genetic basis of adaptation is amenable to study through environmental association. An advantage of environmental association in a well-characterized crop is that many loci that contribute to climatic adaptation and abiotic stress tolerance have already been identified. This provides the opportunity to determine if environmental association approaches effectively identify these loci of large effect. Using published genotyping from 7,864 SNPs in 803 barley landraces, we examined allele frequency differentiation across multiple partitions of the data and mixed model associations relative to bioclimatic variables. Using newly generated resequencing data from a subset of these landraces, we tested for linkage disequilibrium (LD) between SNPs queried in genotyping and SNPs in neighboring loci. Six loci previously reported to contribute to adaptive differences in flowering time and abiotic stress in barley and six loci previously identified in other plant species were identified in our analyses. In many cases, patterns of LD are consistent with the causative variant occurring in the immediate vicinity of the queried SNP. The identification of barley orthologs to well-characterized genes may provide a new understanding of the nature of adaptive variation and could permit a more targeted use of potentially adaptive variants in barley breeding and germplasm improvement.


Assuntos
Adaptação Biológica , Temperatura Baixa , Secas , Estresse Fisiológico , Alelos , Estudos Cross-Over , Bases de Dados Genéticas , Meio Ambiente , Frequência do Gene , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Tipagem Molecular , Fenômenos Fisiológicos Vegetais , Plantas/genética , Polimorfismo de Nucleotídeo Único
3.
Genetics ; 213(2): 595-613, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358533

RESUMO

Germplasm collections hold valuable allelic diversity for crop improvement and genetic mapping of complex traits. To gain access to the genetic diversity within the USDA National Small Grain Collection (NSGC), we developed the Barley Recombinant Inbred Diverse Germplasm Population (BRIDG6), a six-row spring barley multiparent population (MPP) with 88 cultivated accessions crossed to a common parent (Rasmusson). The parents were randomly selected from a core subset of the NSGC that represents the genetic diversity of landrace and breeding accessions. In total, we generated 6160 F5 recombinant inbred lines (RILs), with an average of 69 and a range of 37-168 RILs per family, that were genotyped with 7773 SNPs, with an average of 3889 SNPs segregating per family. We detected 23 quantitative trait loci (QTL) associated with flowering time with five QTL found coincident with previously described flowering time genes. A major QTL was detected near the flowering time gene, HvPpd-H1 which affects photoperiod. Haplotype-based analysis of HvPpd-H1 identified private alleles to families of Asian origin conferring both positive and negative effects, providing the first observation of flowering time-related alleles private to Asian accessions. We evaluated several subsampling strategies to determine the effect of sample size on the power of QTL detection, and found that, for flowering time in barley, a sample size >50 families or 3000 individuals results in the highest power for QTL detection. This MPP will be useful for uncovering large and small effect QTL for traits of interest, and identifying and utilizing valuable alleles from the NSGC for barley improvement.


Assuntos
Mapeamento Cromossômico , Grão Comestível/genética , Hordeum/genética , Locos de Características Quantitativas/genética , Alelos , Cruzamentos Genéticos , Grão Comestível/crescimento & desenvolvimento , Ligação Genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Hordeum/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
4.
G3 (Bethesda) ; 6(3): 609-22, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715093

RESUMO

Barley was introduced to North America ∼400 yr ago but adaptation to modern production environments is more recent. Comparisons of allele frequencies among growth habits and spike (inflorescence) types in North America indicate that significant genetic differentiation has accumulated in a relatively short evolutionary time span. Allele frequency differentiation is greatest among barley with two-row vs. six-row spikes, followed by spring vs. winter growth habit. Large changes in allele frequency among breeding programs suggest a major contribution of genetic drift and linked selection on genetic variation. Despite this, comparisons of 3613 modern North American cultivated barley breeding lines that differ for spike-type and growth habit permit the discovery of 142 single nucleotide polymorphism (SNP) outliers putatively linked to targets of selection. For example, SNPs within the Cbf4, Ppd-H1, and Vrn-H1 loci, which have previously been associated with agronomically adaptive phenotypes, are identified as outliers. Analysis of extended haplotype sharing identifies genomic regions shared within and among breeding populations, suggestive of a number of genomic regions subject to recent selection. Finally, we are able to identify recent bouts of gene flow between breeding populations that could point to the sharing of agronomically adaptive variation. These results are supported by pedigrees and breeders' understanding of germplasm sharing.


Assuntos
Deriva Genética , Hordeum/genética , Seleção Genética , Cruzamento , Evolução Molecular , Fluxo Gênico , Frequência do Gene , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Hordeum/classificação , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
Genome Biol ; 16: 173, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293830

RESUMO

BACKGROUND: The genetic provenance of domesticated plants and the routes along which they were disseminated in prehistory have been a long-standing source of debate. Much of this debate has focused on identifying centers of origins for individual crops. However, many important crops show clear genetic signatures of multiple domestications, inconsistent with geographically circumscribed centers of origin. To better understand the genetic contributions of wild populations to domesticated barley, we compare single nucleotide polymorphism frequencies from 803 barley landraces to 277 accessions from wild populations. RESULTS: We find that the genetic contribution of individual wild populations differs across the genome. Despite extensive human movement and admixture of barley landraces since domestication, individual landrace genomes indicate a pattern of shared ancestry with geographically proximate wild barley populations. This results in landraces with a mosaic of ancestry from multiple source populations rather than discrete centers of origin. We rule out recent introgression, suggesting that these contributions are ancient. The over-representation in landraces of genomic segments from local wild populations suggests that wild populations contributed locally adaptive variation to primitive varieties. CONCLUSIONS: This study increases our understanding of the evolutionary process associated with the transition from wild to domesticated barley. Our findings indicate that cultivated barley is comprised of multiple source populations with unequal contributions traceable across the genome. We detect putative adaptive variants and identify the wild progenitor conferring those variants.


Assuntos
Hordeum/genética , Alelos , Genoma de Planta , Genômica , Filogeografia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...