Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 30(2): 360-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355974

RESUMO

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.


Assuntos
Longevidade , Projetos de Pesquisa , Biomarcadores , Consenso
2.
Nat Aging ; 4(2): 261-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200273

RESUMO

Epigenetic 'clocks' based on DNA methylation have emerged as the most robust and widely used aging biomarkers, but conventional methods for applying them are expensive and laborious. Here we develop tagmentation-based indexing for methylation sequencing (TIME-seq), a highly multiplexed and scalable method for low-cost epigenetic clocks. Using TIME-seq, we applied multi-tissue and tissue-specific epigenetic clocks in over 1,800 mouse DNA samples from eight tissue and cell types. We show that TIME-seq clocks are accurate and robust, enriched for polycomb repressive complex 2-regulated loci, and benchmark favorably against conventional methods despite being up to 100-fold less expensive. Using dietary treatments and gene therapy, we find that TIME-seq clocks reflect diverse interventions in multiple tissues. Finally, we develop an economical human blood clock (R > 0.96, median error = 3.39 years) in 1,056 demographically representative individuals. These methods will enable more efficient epigenetic clock measurement in larger-scale human and animal studies.


Assuntos
Metilação de DNA , Trabalho de Parto , Gravidez , Feminino , Humanos , Camundongos , Animais , Metilação de DNA/genética , Epigênese Genética , Envelhecimento/genética , Epigenômica/métodos
4.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657418

RESUMO

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Assuntos
Envelhecimento , Longevidade , Humanos , Biomarcadores
5.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335096

RESUMO

Reactive metabolites and related electrophilic drugs are among the most challenging small molecules to study. Conventional approaches to deconstruct the mode of action (MOA) of such molecules leverage bulk treatment of experimental specimens with an excess of a specific reactive species. In this approach, the high reactivity of electrophiles renders non-discriminate labeling of the proteome in a time- and context-dependent manner; redox-sensitive proteins and processes can also be indirectly and often irreversibly affected. Against such a backdrop of innumerable potential targets and indirect secondary effects, linking phenotype to specific target engagement remains a complex task. Zebrafish targeting reactive electrophiles and oxidants (Z-REX)-an on-demand reactive-electrophile delivery platform adapted for use in larval zebrafish-is designed to deliver electrophiles to a specific protein of interest (POI) in otherwise unperturbed live fish embryos. Key features of this technique include a low level of invasiveness, along with dosage-, chemotype-, and spatiotemporally-controlled precision electrophile delivery. Thus, in conjunction with a unique suite of controls, this technique sidesteps off-target effects and systemic toxicity, otherwise observed following uncontrolled bulk exposure of animals to reactive electrophiles and pleiotropic electrophilic drugs. Leveraging Z-REX, researchers can establish a foothold in the understanding of how individual stress responses and signaling outputs are altered as a result of specific reactive ligand engagement with a specific POI, under near-physiologic conditions in intact living animals.


Assuntos
Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Preparações Farmacêuticas , Larva/metabolismo , Oxirredução , Proteínas/metabolismo
7.
Nat Protoc ; 18(5): 1379-1415, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020146

RESUMO

This Protocol Extension describes the adaptation of an existing Protocol detailing the use of targetable reactive electrophiles and oxidants, an on-demand redox targeting toolset in cultured cells. The adaptation described here is for use of reactive electrophiles and oxidants technologies in live zebrafish embryos (Z-REX). Zebrafish embryos expressing a Halo-tagged protein of interest (POI)-either ubiquitously or tissue specifically-are treated with a HaloTag-specific small-molecule probe housing a photocaged reactive electrophile (either natural electrophiles or synthetic electrophilic drug-like fragments). The reactive electrophile is then photouncaged at a user-defined time, enabling proximity-assisted electrophile-modification of the POI. Functional and phenotypic ramifications of POI-specific modification can then be monitored, by coupling to standard downstream assays, such as click chemistry-based POI-labeling and target-occupancy quantification; immunofluorescence or live imaging; RNA-sequencing and real-time quantitative polymerase chain reaction analyses of downstream-transcript modulations. Transient expression of requisite Halo-POI in zebrafish embryos is achieved by messenger RNA injection. Procedures associated with generation of transgenic zebrafish expressing a tissue-specific Halo-POI are also described. The Z-REX experiments can be completed in <1 week using standard techniques. To successfully execute Z-REX, researchers should have basic skills in fish husbandry, imaging and pathway analysis. Experience with protein or proteome manipulation is useful. This Protocol Extension is aimed at helping chemical biologists study precision redox events in a model organism and fish biologists perform redox chemical biology.


Assuntos
Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Larva/metabolismo , Proteínas/metabolismo , Oxirredução , Oxidantes/metabolismo
8.
Cell Metab ; 35(5): 807-820.e5, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37086720

RESUMO

Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both directions. At epigenetic, transcriptomic, and metabolomic levels, we find that the biological age of young mice is increased by heterochronic parabiosis and restored following surgical detachment. We also identify transient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or mice. Together, these data show that biological age undergoes a rapid increase in response to diverse forms of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics that should be considered in future studies. The elevation of biological age by stress may be a quantifiable and actionable target for future interventions.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Envelhecimento/fisiologia , Parabiose
9.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300632

RESUMO

Studying electrophile signaling is marred by difficulties in parsing changes in pathway flux attributable to on-target, vis-à-vis off-target, modifications. By combining bolus dosing, knockdown, and Z-REX-a tool investigating on-target/on-pathway electrophile signaling, we document that electrophile labeling of one zebrafish-Keap1-paralog (zKeap1b) stimulates Nrf2- driven antioxidant response (AR) signaling (like the human-ortholog). Conversely, zKeap1a is a dominant-negative regulator of electrophile-promoted Nrf2-signaling, and itself is nonpermissive for electrophile-induced Nrf2-upregulation. This behavior is recapitulated in human cells: (1) zKeap1b-expressing cells are permissive for augmented AR-signaling through reduced zKeap1b-Nrf2 binding following whole-cell electrophile treatment; (2) zKeap1a-expressing cells are non-permissive for AR-upregulation, as zKeap1a-Nrf2 binding capacity remains unaltered upon whole-cell electrophile exposure; (3) 1:1 ZKeap1a:zKeap1b-co-expressing cells show no Nrf2-release from the Keap1-complex following whole-cell electrophile administration, rendering these cells unable to upregulate AR. We identified a zKeap1a-specific point-mutation (C273I) responsible for zKeap1a's behavior during electrophilic stress. Human-Keap1(C273I), of known diminished Nrf2-regulatory capacity, dominantly muted electrophile-induced Nrf2-signaling. These studies highlight divergent and interdependent electrophile signaling behaviors, despite conserved electrophile sensing.


Assuntos
Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Animais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peixe-Zebra/metabolismo , Antioxidantes/metabolismo , Transdução de Sinais
10.
Sci Adv ; 8(37): eabo5482, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112674

RESUMO

Development is tightly connected to aging, but whether pharmacologically targeting development can extend life remains unknown. Here, we subjected genetically diverse UMHET3 mice to rapamycin for the first 45 days of life. The mice grew slower and remained smaller than controls for their entire lives. Their reproductive age was delayed without affecting offspring numbers. The treatment was sufficient to extend the median life span by 10%, with the strongest effect in males, and helped to preserve health as measured by frailty index scores, gait speed, and glucose and insulin tolerance tests. Mechanistically, the liver transcriptome and epigenome of treated mice were younger at the completion of treatment. Analogous to mice, rapamycin exposure during development robustly extended the life span of Daphnia magna and reduced its body size. Overall, the results demonstrate that short-term rapamycin treatment during development is a novel longevity intervention that acts by slowing down development and aging, suggesting that aging may be targeted already early in life.


Assuntos
Insulinas , Longevidade , Animais , Daphnia/genética , Glucose , Masculino , Camundongos , Sirolimo/farmacologia
11.
Nat Commun ; 12(1): 5736, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593792

RESUMO

Despite the emerging importance of reactive electrophilic drugs, deconvolution of their principal targets remains difficult. The lack of genetic tractability/interventions and reliance on secondary validation using other non-specific compounds frequently complicate the earmarking of individual binders as functionally- or phenotypically-sufficient pathway regulators. Using a redox-targeting approach to interrogate how on-target binding of pleiotropic electrophiles translates to a phenotypic output in vivo, we here systematically track the molecular components attributable to innate immune cell toxicity of the electrophilic-drug dimethyl fumarate (Tecfidera®). In a process largely independent of canonical Keap1/Nrf2-signaling, Keap1-specific modification triggers mitochondrial-targeted neutrophil/macrophage apoptosis. On-target Keap1-ligand-engagement is accompanied by dissociation of Wdr1 from Keap1 and subsequent coordination with cofilin, intercepting Bax. This phagocytic-specific cell-killing program is recapitulated by whole-animal administration of dimethyl fumarate, where individual depletions of the players identified above robustly suppress apoptosis.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Fumarato de Dimetilo/farmacologia , Imunossupressores/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Embrião de Mamíferos , Embrião não Mamífero , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Peixe-Zebra
12.
Front Aging Neurosci ; 12: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116644

RESUMO

With a lipid-rich environment and elevated oxygen consumption, the central nervous system (CNS) is subject to intricate regulation by lipid-derived electrophiles (LDEs). Investigations into oxidative damage and chronic LDE generation in neural disorders have spurred the development of tools that can detect and catalog the gamut of LDE-adducted proteins. Despite these advances, deconstructing the precise consequences of individual protein-specific LDE modifications remained largely impossible until recently. In this perspective, we first overview emerging toolsets that can decode electrophile-signaling events in a protein/context-specific manner, and how the accumulating mechanistic insights brought about by these tools have begun to offer new means to modulate pathways relevant to multiple sclerosis (MS). By surveying the latest data surrounding the blockbuster MS drug dimethyl fumarate that functions through LDE-signaling-like mechanisms, we further provide a vision for how chemical biology tools probing electrophile signaling may be leveraged toward novel interventions in CNS disease.

13.
Helv Chim Acta ; 103(5)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34113045

RESUMO

The key mRNA-binding proteins HuR and AUF1 are reported stress sensors in mammals. Intrigued by recent reports of sensitivity of these proteins to the electrophilic lipid prostaglandin A2 and other redox signals, we here examined their sensing abilities to a prototypical redox-linked lipid-derived electrophile, 4-hydroxynonenal (HNE). Leveraging our T-REX electrophile delivery platform, we found that only HuR, and not AUF1, is a kinetically-privileged sensor of HNE in HEK293T cells, and sensing functions through a specific cysteine, C13. Cells depleted of HuR, upon treatment with HNE, manifest unique alterations in cell viability and Nrf2-transcription-factor-driven antioxidant response (AR), which our recent work shows is regulated by HuR at the Nrf2-mRNA level. Mutagenesis studies showed that C13-specific sensing alone is not sufficient to explain HuR-dependent stress responsivities, further highlighting a complex context-dependent layer of Nrf2/AR regulation through HuR.

14.
FASEB J ; 33(12): 14636-14652, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31665914

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis is a target of covalent drugs and bioactive native electrophiles. However, much of our understanding of Nrf2 regulation has been focused at the protein level. Here we report a post-transcriptional modality to directly regulate Nrf2-mRNA. Our initial studies focused on the effects of the key mRNA-binding protein (mRBP) HuR on global transcriptomic changes incurred upon oxidant or electrophile stimulation. These RNA-sequencing data and subsequent mechanistic analyses led us to discover a novel role of HuR in regulating Nrf2 activity, and in the process, we further identified the related mRBP AUF1 as an additional novel Nrf2 regulator. Both mRBPs regulate Nrf2 activity by direct interaction with the Nrf2 transcript. Our data showed that HuR enhances Nrf2-mRNA maturation and promotes its nuclear export, whereas AUF1 stabilizes Nrf2-mRNA. Both mRBPs target the 3'-UTR of Nrf2-mRNA. Using a Nrf2 activity-reporter zebrafish strain, we document that this post-transcriptional control of Nrf2 activity is conserved at the whole-vertebrate level.-Poganik, J. R., Long, M. J. C., Disare, M. T., Liu, X., Chang, S.-H., Hla, T., Aye, Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Células Cultivadas , Proteína Semelhante a ELAV 1/genética , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra
15.
16.
Trends Biochem Sci ; 44(4): 380-381, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30765181

RESUMO

Understanding the targets and signaling roles of reactive electrophilic species (RES) at a specific cellular space and time has long been hampered by the reliance of the field on the bulk administration of excess RES from outside of cells and/or animals. Uncontrolled bolus methods provide limited understanding of target engagement for these individual nonenzymatic RES-modification events. REX technologies [targetable reactive electrophiles and oxidants (T-REX) and its genome-wide variant (G-REX)] were developed as a gateway to address these limitations. These protocols offer a new ability to both profile kinetically privileged sensors (KPSs) of RES at a systems level (G-REX™ profiling) and monitor signaling responses at the sensor protein-of-interest (POI)-specific level (T-REX™ delivery) with high spatiotemporal resolution. REX technologies are compatible with several model systems and are built on a HaloTag-targetable small-molecule photocaged precursor to a native RES.


Assuntos
Proteínas/metabolismo , Transdução de Sinais , Animais , Regulação da Expressão Gênica , Humanos , Cinética , Oxidantes/metabolismo , Proteínas/genética
17.
Cell Chem Biol ; 25(11): 1315-1317, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445052

RESUMO

Challenging the paradigm of SECIS-dependent selenoprotein translation, in this issue of Cell Chemical BiologyGuo et al. (2018) introduce a new selenoprotein profiling platform with which they identify novel selenoproteins apparently lacking SECIS. With increased interest in covalent targeting of reactive Sec residues in drug discovery, their method adds a valuable contribution toward expanding the druggable human proteome.


Assuntos
Selenocisteína , Selenoproteínas , Humanos , Espectrometria de Massas , Proteoma , Proteínas Proto-Oncogênicas c-ret
18.
Chem Rev ; 118(18): 8798-8888, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30148624

RESUMO

The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.


Assuntos
Aldeídos/metabolismo , Alcenos/metabolismo , Cetonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Aldeídos/química , Alcenos/química , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/fisiopatologia , Humanos , Cetonas/química , Esclerose Múltipla/etiologia , Esclerose Múltipla/fisiopatologia , Neoplasias/etiologia , Neoplasias/fisiopatologia , Oxirredução , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/química , Proteínas/metabolismo , Espécies Reativas de Oxigênio/química
19.
Bioessays ; 40(5): e1700240, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603288

RESUMO

Precision cell signaling activities of reactive electrophilic species (RES) are arguably among the most poorly-understood means to transmit biological messages. Latest research implicates native RES to be a chemically-distinct subset of endogenous redox signals that influence cell decision making through non-enzyme-assisted modifications of specific proteins. Yet, fundamental questions remain regarding the role of RES as bona fide second messengers. Here, we lay out three sets of criteria we feel need to be met for RES to be considered as true cellular signals that directly mediate information transfer by modifying "first-responding" sensor proteins. We critically assess the available evidence and define the extent to which each criterion has been fulfilled. Finally, we offer some ideas on the future trajectories of the electrophile signaling field taking inspiration from work that has been done to understand canonical signaling mediators. Also see the video abstract here: https://youtu.be/rG7o0clVP0c.


Assuntos
Eletroquímica/métodos , Humanos , Oxirredução , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
ACS Chem Biol ; 12(3): 586-600, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28068059

RESUMO

Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.


Assuntos
Frações Subcelulares/metabolismo , Técnicas In Vitro , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...