Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Curr Issues Mol Biol ; 45(4): 3406-3418, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37185747

RESUMO

Database records contain useful information, which is readily available, but, unfortunately, limited compared to the source (publications). Our study reviewed the text fragments supporting the association between the biological macromolecules and diseases from Open Targets to map them on the biological level of study (DNA/RNA, proteins, metabolites). We screened records using a dictionary containing terms related to the selected levels of study, reviewed 600 hits manually and used machine learning to classify 31,260 text fragments. Our results indicate that association studies between diseases and macromolecules conducted on the level of DNA and RNA prevail, followed by the studies on the level of proteins and metabolites. We conclude that there is a clear need to translate the knowledge from the DNA/RNA level to the evidence on the level of proteins and metabolites. Since genes and their transcripts rarely act in the cell by themselves, more direct evidence may be of greater value for basic and applied research.

2.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675202

RESUMO

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.


Assuntos
Antineoplásicos , Software , Humanos , Teorema de Bayes , Antineoplásicos/farmacologia , Antineoplásicos/química , Prednisona , Linhagem Celular Tumoral
3.
J Pers Med ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35330478

RESUMO

Within the Human Proteome Project initiative framework for creating functional annotations of uPE1 proteins, the neXt-CP50 Challenge was launched in 2018. In analogy with the missing-protein challenge, each command deciphers the functional features of the proteins in the chromosome-centric mode. However, the neXt-CP50 Challenge is more complicated than the missing-protein challenge: the approaches and methods for solving the problem are clear, but neither the concept of protein function nor specific experimental and/or bioinformatics protocols have been standardized to address it. We proposed using a retrospective analysis of the key HPP repository, the neXtProt database, to identify the most frequently used experimental and bioinformatic methods for analyzing protein functions, and the dynamics of accumulation of functional annotations. It has been shown that the dynamics of the increase in the number of proteins with known functions are greater than the progress made in the experimental confirmation of the existence of questionable proteins in the framework of the missing-protein challenge. At the same time, the functional annotation is based on the guilty-by-association postulate, according to which, based on large-scale experiments on API-MS and Y2H, proteins with unknown functions are most likely mapped through "handshakes" to biochemical processes.

4.
Pharmaceutics ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924315

RESUMO

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. For the creation of structure-activity relationship (SAR) models that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms (PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs mediated by these cytochromes were used as a training set. Prediction can be carried out both for known drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO CV) procedures was about 0.92. The SAR models created are publicly available as a web resource and provide predictions of DDIs mediated by the most important cytochromes P450.

5.
Sci Rep ; 10(1): 257, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937840

RESUMO

Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.


Assuntos
Demência Vascular/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia de Alvo Molecular , Bases de Dados Factuais , Farmacologia , Interface Usuário-Computador
6.
J Chem Inf Model ; 59(11): 4513-4518, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31661960

RESUMO

Discovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required. We describe a web application called AntiBac-Pred aimed to help users in the rational selection of the chemical compounds for experimental studies of antibacterial activity. This application is developed using antibacterial activity data available in ChEMBL and PASS software. It allows users to classify chemical structures of interest into growth inhibitors or noninhibitors of 353 different bacteria strains, including both resistant and nonresistant ones.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Software , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas/métodos , Humanos , Internet
7.
Curr Top Med Chem ; 19(5): 319-336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30674264

RESUMO

Drug-drug interaction (DDI) is the phenomenon of alteration of the pharmacological activity of a drug(s) when another drug(s) is co-administered in cases of so-called polypharmacy. There are three types of DDIs: pharmacokinetic (PK), pharmacodynamic, and pharmaceutical. PK is the most frequent type of DDI, which often appears as a result of the inhibition or induction of drug-metabolising enzymes (DME). In this review, we summarise in silico methods that may be applied for the prediction of the inhibition or induction of DMEs and describe appropriate computational methods for DDI prediction, showing the current situation and perspectives of these approaches in medicinal and pharmaceutical chemistry. We review sources of information on DDI, which can be used in pharmaceutical investigations and medicinal practice and/or for the creation of computational models. The problem of the inaccuracy and redundancy of these data are discussed. We provide information on the state-of-the-art physiologically- based pharmacokinetic modelling (PBPK) approaches and DME-based in silico methods. In the section on ligand-based methods, we describe pharmacophore models, molecular field analysis, quantitative structure-activity relationships (QSAR), and similarity analysis applied to the prediction of DDI related to the inhibition or induction of DME. In conclusion, we discuss the problems of DDI severity assessment, mention factors that influence severity, and highlight the issues, perspectives and practical using of in silico methods.


Assuntos
Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Indução Enzimática , Humanos , Preparações Farmacêuticas/química , Relação Estrutura-Atividade
8.
J Chem Inf Model ; 59(2): 713-730, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30688458

RESUMO

Numerous studies have been published in recent years with acceptable quantitative structure-activity relationship (QSAR) modeling based on heterogeneous data. In many cases, the training sets for QSAR modeling were constructed from compounds tested by different biological assays, contradicting the opinion that QSAR modeling should be based on the data measured by a single protocol. We attempted to develop approaches that help to determine how heterogeneous data should be used for the creation of QSAR models on the basis of different sets of compounds tested by different experimental methods for the same target and the same endpoint. To this end, more than 100 QSAR models for the IC50 values of ligands interacting with cyclooxygenase 1,2 (COX) and seed lipoxygenase (LOX), obtained from ChEMBL database were created using the GUSAR software. The QSAR models were tested on the external set, including 26 new thiazolidinone derivatives, which were experimentally tested for COX-1,2/LOX inhibition. The IC50 values of the derivatives varied from 89 µM to 26 µM for LOX, from 200 µM to 0.018 µM for COX-1, and from 210 µM to 1 µM for COX-2. This study showed that the accuracy of the models is dependent on the distribution of IC50 values of low activity compounds in the training sets. In the most cases, QSAR models created based on the combined training sets had advantages in comparison with QSAR models, based on a single publication. We introduced a new method of combination of quantitative data from different experimental studies based on the data of reference compounds, which was called "scaling".


Assuntos
Quimioinformática/métodos , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Relação Quantitativa Estrutura-Atividade , Ciclo-Oxigenase 1/metabolismo , Humanos , Concentração Inibidora 50 , Glycine max/enzimologia
9.
Front Pharmacol ; 9: 1136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364128

RESUMO

Estimation of interaction of drug-like compounds with antitargets is important for the assessment of possible toxic effects during drug development. Publicly available online databases provide data on the experimental results of chemical interactions with antitargets, which can be used for the creation of (Q)SAR models. The structures and experimental Ki and IC50 values for compounds tested on the inhibition of 30 antitargets from the ChEMBL 20 database were used. Data sets with Ki and IC50 values including more than 100 compounds were created for each antitarget. The (Q)SAR models were created by GUSAR software using quantitative neighborhoods of atoms (QNA), multilevel neighborhoods of atoms (MNA) descriptors, and self-consistent regression. The accuracy of (Q)SAR models was validated by the fivefold cross-validation procedure. The balanced accuracy was higher for qualitative SAR models (0.80 and 0.81 for Ki and IC50 values, respectively) than for quantitative QSAR models (0.73 and 0.76 for Ki and IC50 values, respectively). In most cases, sensitivity was higher for SAR models than for QSAR models, but specificity was higher for QSAR models. The mean R 2 and RMSE were 0.64 and 0.77 for Ki values and 0.59 and 0.73 for IC50 values, respectively. The number of compounds falling within the applicability domain was higher for SAR models than for the test sets.

10.
Front Chem ; 6: 133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755970

RESUMO

Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of "active" and "inactive" compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

11.
PLoS One ; 13(1): e0191838, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29370280

RESUMO

In silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL. The average accuracy of prediction (AUC) calculated by leave-one-out and a 20-fold cross-validation procedure during the training was 0.930 and 0.927 for 278 cancer cell lines, respectively, and 0.948 and 0.947 for cytotoxicity prediction for 27 normal cell lines, respectively. Using the given SAR models, we developed a freely available web-service for cell-line cytotoxicity profile prediction (CLC-Pred: Cell-Line Cytotoxicity Predictor) based on the following structural formula: http://way2drug.com/Cell-line/.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Internet , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais/estatística & dados numéricos , Feminino , Humanos , Relação Estrutura-Atividade
12.
Biosens Bioelectron ; 99: 216-222, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28763782

RESUMO

Electroanalysis of myoglobin (Mb) in 10 plasma samples of healthy donors (HDs) and 14 plasma samples of patients with acute myocardial infarction (AMI) was carried out with screen-printed electrodes modified first with multi-walled carbon nanotubes (MWCNT) and then with a molecularly imprinted polymer film (MIP), viz., myoglobin-imprinted electropolymerized poly(o-phenylenediamine). The differential pulse voltammetry (DPV) parameters, such as a maximum amplitude of reduction peak current (A, nA), a reduction peak area (S, nA × V), and a peak potential (P, V), were measured for the MWCNT/MIP-sensors after their incubation with non-diluted plasma. The relevance of the multi-parameter electrochemical data for accurate discrimination between HDs and patients with AMI was assessed on the basis of electrochemical threshold values (this requires the reference standard method (RAMP® immunoassay)) or alternatively on the basis of the computational cluster assay (this does not require any reference standard method). The multi-parameter electrochemical analysis of biosamples combined with computational cluster assay was found to provide better accuracy in classification of plasma samples to the groups of HDs or AMI patients.


Assuntos
Técnicas Biossensoriais , Infarto do Miocárdio/sangue , Mioglobina/sangue , Nanotubos de Carbono/química , Técnicas Eletroquímicas , Humanos , Impressão Molecular , Mioglobina/isolamento & purificação , Fenilenodiaminas/química
13.
Toxicol Sci ; 145(2): 321-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25766883

RESUMO

Ventricular tachyarrhythmia (VT) is one of the most serious adverse drug reactions leading to death. The in vitro assessment of the interaction of lead compounds with HERG potassium channels, which is one of the primary known causes of VT induction, is an obligatory test during drug development. However, experimental and clinical data support the hypothesis that the inhibition of ion channels is not the only mechanism of VT induction. Therefore, the identification of other drug targets contributing to the induction of VT is crucial. We developed a systems chemical biology approach for searching for such targets. This approach involves the following steps: (1) creation of special sets of VT-causing and non-VT-causing drugs, (2) statistical analysis of in silico predicted drug-target interaction profiles of studied drugs with 1738 human protein targets for the identification of potential VT-related targets, (3) gene ontology and pathway enrichment analysis of the revealed targets for the identification of biological processes underlying drug-induced VT etiology, (4) creation of a cardiomyocyte regulatory network (CRN) based on general and heart-specific signaling and regulatory pathways, and (5) simulation of changes in the behavior of the CRN caused by the inhibition of each node for the identification of potential VT-related targets. As a result, we revealed 312 potential VT-related targets and classified them into 3 confidence categories: high (36 proteins), medium (111 proteins), and low (165 proteins) classes. The most probable targets may serve as a basis for experimental confirmation and may be used for in vitro or in silico assessments of the relationships between drug candidates and drug-induced VT, the understanding of contraindications of drug application and dangerous drug combinations.


Assuntos
Sistema de Condução Cardíaco/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Biologia de Sistemas , Taquicardia Ventricular/induzido quimicamente , Testes de Toxicidade/métodos , Potenciais de Ação/efeitos dos fármacos , Algoritmos , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Estrutura Molecular , Miócitos Cardíacos/metabolismo , Mapas de Interação de Proteínas , Medição de Risco , Relação Estrutura-Atividade , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia
14.
Nat Prod Rep ; 31(11): 1585-611, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25051191

RESUMO

In silico approaches have been widely recognised to be useful for drug discovery. Here, we consider the significance of available databases of medicinal plants and chemo- and bioinformatics tools for in silico drug discovery beyond the traditional use of folk medicines. This review contains a practical example of the application of combined chemo- and bioinformatics methods to study pleiotropic therapeutic effects (known and novel) of 50 medicinal plants from Traditional Indian Medicine.


Assuntos
Descoberta de Drogas , Medicina Tradicional , Plantas Medicinais/química , Biologia Computacional , Bases de Dados Factuais , Estrutura Molecular
15.
Chem Res Toxicol ; 27(7): 1263-81, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24920530

RESUMO

Drug-induced myocardial infarction (DIMI) is one of the most serious adverse drug effects that often lead to death. Therefore, the identification of DIMI at the early stages of drug development is essential. For this purpose, the in vitro testing and in silico prediction of interactions between drug-like substances and various off-target proteins associated with serious adverse drug reactions are performed. However, only a few DIMI-related protein targets are currently known. We developed a novel in silico approach for the identification of DIMI-related protein targets. This approach is based on the computational prediction of drug-target interaction profiles based on information from approximately 1738 human targets and 828 drugs, including 254 drugs that cause myocardial infarction. Through a statistical analysis, we revealed the 155 most significant associations between protein targets and DIMI. Because not all of the identified associations may lead to DIMI, an analysis of the biological functions of these proteins was performed. The Random Walk with Restart algorithm based on a functional linkage gene network was used to prioritize the revealed DIMI-related protein targets according to the functional similarity between their genes and known genes associated with myocardial infarction. The biological processes associated with the 155 selected protein targets were determined by gene ontology and pathway enrichment analysis. This analysis indicated that most of the processes leading to DIMI are associated with atherosclerosis. The revealed proteins were manually annotated with biological processes using functional and disease-related data extracted from the literature. Finally, the 155 protein targets were classified into three categories of confidence: (1) high (the protein targets are known to be involved in DIMI via atherosclerotic progression; 50 targets), (2) medium (the proteins are known to participate in biological processes related with DIMI; 65 targets), and (3) low (the proteins are indirectly involved in DIMI pathogenesis; 40 proteins).


Assuntos
Aterosclerose/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Infarto do Miocárdio/induzido quimicamente , Proteínas/metabolismo , Algoritmos , Aterosclerose/metabolismo , Simulação por Computador , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Infarto do Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...